0:00
1, 10, 100 More
Select the skills to practice, and then click Go!
Foundational skills
Identify which digit changes (1 more)
\[ \text{Example: } 346 \xrightarrow{+1} 347 \]
Identify which place value column changes when adding 1 to a number that does not cross a boundary.
Identify which digit changes (10 more)
\[ \text{Example: } 425 \xrightarrow{+10} 435 \]
Identify which place value column changes when adding 10 to a number that does not cross a boundary.
Identify which digit changes (100 more)
\[ \text{Example: } 2536 \xrightarrow{+100} 2636 \]
Identify which place value column changes when adding 100 to a number that does not cross a boundary.
1 more – no boundary
1 more than a 1-digit number
\[ \text{Example: } 7 \xrightarrow{+1} 8 \]
Find one more than a single-digit number where the answer stays as a single digit.
1 more than a 2-digit number
\[ \text{Example: } 45 \xrightarrow{+1} 46 \]
Find one more than a 2-digit number where only the units digit changes.
1 more than a 3-digit number
\[ \text{Example: } 346 \xrightarrow{+1} 347 \]
Find one more than a 3-digit number where only the units digit changes.
1 more than a 4-digit number
\[ \text{Example: } 2847 \xrightarrow{+1} 2848 \]
Find one more than a 4-digit number where only the units digit changes.
1 more – crossing tens
1 more than a 2-digit number
\[ \text{Example: } 49 \xrightarrow{+1} 50 \]
Find one more than a 2-digit number ending in 9 where both the units and tens digits change.
1 more than a 3-digit number
\[ \text{Example: } 159 \xrightarrow{+1} 160 \]
Find one more than a 3-digit number ending in 9 (but not 99) where the units and tens digits change.
1 more than a 4-digit number
\[ \text{Example: } 3279 \xrightarrow{+1} 3280 \]
Find one more than a 4-digit number ending in 9 (but not 99) where the units and tens digits change.
1 more – crossing hundreds
1 more than a 3-digit number
\[ \text{Example: } 299 \xrightarrow{+1} 300 \]
Find one more than a 3-digit number ending in 99 (but not 999) where units and tens become 0.
1 more than a 4-digit number
\[ \text{Example: } 2499 \xrightarrow{+1} 2500 \]
Find one more than a 4-digit number ending in 99 (but not 999) where the hundreds digit changes.
1 more – crossing thousands
1 more than a 4-digit number
\[ \text{Example: } 3999 \xrightarrow{+1} 4000 \]
Find one more than a 4-digit number ending in 999 (but not 9999) where the thousands digit changes.
10 more – no boundary
10 more than a 1-digit number
\[ \text{Example: } 6 \xrightarrow{+10} 16 \]
Find ten more than a single-digit number.
10 more than a 2-digit number
\[ \text{Example: } 53 \xrightarrow{+10} 63 \]
Find ten more than a 2-digit number where only the tens digit changes.
10 more than a 3-digit number
\[ \text{Example: } 425 \xrightarrow{+10} 435 \]
Find ten more than a 3-digit number where only the tens digit changes.
10 more than a 4-digit number
\[ \text{Example: } 3254 \xrightarrow{+10} 3264 \]
Find ten more than a 4-digit number where only the tens digit changes.
10 more – crossing hundreds
10 more than a 2-digit number
\[ \text{Example: } 94 \xrightarrow{+10} 104 \]
Find ten more than a 2-digit number in the 90s where the answer becomes a 3-digit number.
10 more than a 3-digit number
\[ \text{Example: } 392 \xrightarrow{+10} 402 \]
Find ten more than a 3-digit number where the tens digit is 9 and the hundreds digit increases.
10 more than a 4-digit number
\[ \text{Example: } 2593 \xrightarrow{+10} 2603 \]
Find ten more than a 4-digit number where the tens digit is 9 and only the hundreds digit increases.
10 more – crossing thousands
10 more than a 3-digit number
\[ \text{Example: } 994 \xrightarrow{+10} 1004 \]
Find ten more than a 3-digit number in the 990s where the answer becomes a 4-digit number.
10 more than a 4-digit number
\[ \text{Example: } 4995 \xrightarrow{+10} 5005 \]
Find ten more than a 4-digit number where the tens and hundreds digits are both 9 causing thousands to increase.
10 more – crossing ten-thousands
10 more than a 4-digit number
\[ \text{Example: } 9992 \xrightarrow{+10} 10002 \]
Find ten more than a 4-digit number in the 9990s where the answer becomes a 5-digit number.
100 more – no boundary
100 more than a 1-digit number
\[ \text{Example: } 7 \xrightarrow{+100} 107 \]
Find one hundred more than a single-digit number.
100 more than a 2-digit number
\[ \text{Example: } 46 \xrightarrow{+100} 146 \]
Find one hundred more than a 2-digit number.
100 more than a 3-digit number
\[ \text{Example: } 345 \xrightarrow{+100} 445 \]
Find one hundred more than a 3-digit number where only the hundreds digit changes.
100 more than a 4-digit number
\[ \text{Example: } 4256 \xrightarrow{+100} 4356 \]
Find one hundred more than a 4-digit number where only the hundreds digit changes.
100 more – crossing thousands
100 more than a 3-digit number
\[ \text{Example: } 945 \xrightarrow{+100} 1045 \]
Find one hundred more than a 3-digit number in the 900s where the answer becomes a 4-digit number.
100 more than a 4-digit number
\[ \text{Example: } 3956 \xrightarrow{+100} 4056 \]
Find one hundred more than a 4-digit number where the hundreds digit is 9 and the thousands digit increases.
100 more – crossing ten-thousands
100 more than a 4-digit number
\[ \text{Example: } 9945 \xrightarrow{+100} 10045 \]
Find one hundred more than a 4-digit number in the 9900s where the answer becomes a 5-digit number.
Special cases
1 more than a number with all 9s
\[ \text{Example: } 999 \xrightarrow{+1} 1000 \]
Find one more than a number where every digit is 9 causing a completely new place value.
Timer (Optional)
0:00
Question