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The Subgoal Learning Model: Creating Better Examples 
So That Students Can Solve Novel Problems 

R i c h a r d  C a t r a m b o n e  
Georgia Institute of Technology 

Learners have great difficulty solving problems requiring changes to solutions demonstrated in 
examples. However, if the solution procedures learners form are organized by subgoals, then 
they are more successful. Subgoal learning is hypothesized to be aided by cues in example 
solutions that indicate that certain steps go together. These cues may induce a learner to 
attempt to self-explain the purpose of the steps, resulting in the formation of a subgoal. Across 
4 experiments it was found that a label for a group of steps in examples helped participants 
form subgoals as assessed by measures such as problem-solving performance and talk aloud 
protocols. Abstract labels were more likely than superficial labels to lead participants to form 
subgoals with fewer ties to surface features. Subgoals guide problem solving by helping 
learners focus on the steps to modify in novel problems that involve the same subgoals but 
require new steps to achieve them. 

Learners have difficulty solving problems that involve 
more than minor changes to the procedure demonstrated by 
training problems or examples (e.g., Bassok, Wu, & Olseth, 
1995; Catrambone, 1994, 1995, 1996; Novick & Holyoak, 
1991; Reed, Dempster, & Ettinger, 1985; Ross, 1987, 1989). 
People tend to form solution procedures that consist of a 
long series of steps--which are frequently tied to incidental 
features of the problems rather than more meaningful 
representations that would enable them to successfully 
tackle new problems (Singley & Anderson, 1989). 

Consider a student who studies the following worked 
example (adapted from Reed, Acklnclose, & Voss, 1990): 

Tom can mow his lawn in 1.5 hours. How long will it take him 
to finish mowing his lawn if his son mowed 1/4 of it? 

Solution: 

0A.s * h)  + .25 = 1 ---* ( . 6 7  * h)  + .25  = 1 

---*.67. h = .75---* h = 1.13 hrs, 

where h is the number of hours worked. 
A student might learn from this that the way such "work" 

problems are solved is to take one person's time and divide 1 
by it, multiply it by the unknown, add the amount that was 
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already done, and set it all equal to 1. Such an approach 
would not be successful for the following problem (also 
adapted from Reed et al., 1990): 

Bill can paint a room in 3 hours and Fred can paint it in 5 
hours. How long will it take them if they both work together? 

Solution: 

(% * h)  + (1A * h)  = 1 ---, ( . 33  * h)  + ( . 2 0  * h)  = 1 

.53 * h = 1 ---* h = 1.89 hrs. 

Although the same conceptual approach is used in both 
cases--represent the amount of work done by each worker 
and set it equal to the total amount of work to dot---the 
step-by-step approach described after the first problem's 
solution does not capture it. A learner who memorized such a 
step-by-step approach would have difficulty solving the 
second problem because he or she would have little guid- 
ance for adapting the solution. This is the type of result often 
found in studies of problem solving (Novick & Holyoak, 
1991; Reed et al., 1990). 

Such findings are a cause for concern. Presumably one of 
the jobs of education is to equip people to deal with novel 
problems and situations, not just a small recognizable set. 
Yet it appears that this job does not get done. Learners seem 
to be predisposed, or the environment shapes them to 
develop the disposition, to have their problem solving 
guided by sets of memorized steps and by surface features of 
problems (Chi, Feltovich, & Glaser, 1981; Larkin, McDer- 
mott, Simon, & Simon, 1980; Ross, 1987, 1989). Surface or 
superficial features are those aspects of problems that, when 
changed, do not affect the solution procedure; that is, they 
have no necessary relevance to the solution to the problem. 
For example, it does not necessarily matter whether a 
mechanics problem in physics involves a block sliding down 
an inclined plane or two objects suspended over a pulley. If 
the problem asks for the velocity of a particular object, the 
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same set of general equations involving Newton's Laws and 
linear motion can be used even though the details of how the 
equations are filled out and related to one another will vary 
depending on information provided in the problem. Learners 
often do not realize that seemingly different sets of steps 
across problems might be calculating the same thing such as 
the force acting on a particular object. 

Students tend to memorize the details of how the equa- 
tions are filled out rather than learning the deeper, concep- 
tual knowledge that is implicit in the details. Thus, if they 
are given a new problem that seems similar to an old one--a t  
a surface level----~ey will try to apply a set of steps from the 
old problem. These steps are invoked when the learner 
recognizes certain features to be present in a problem (e.g., a 
problem involving a block sliding down an inclined plane). 
If  the steps can not be used, the learner will frequently not 
know what to do. 

A more fruitful approach to problem solving would be to 
organize one's problem-solving knowledge in some way that 
ties the steps to a meaningful hierarchical structure (e.g., 
Anzai & Simon, 1979; Brown, Kane, & Echols, 1986; 
Catrambone & Holyoak, 1990; Newell & Simon, 1972). 
This organization is more consistent with the way that 
experts tend to go about solving problems (e.g., Larkin et al., 
1980). Although an expert's conception of how to solve 
problems in a domain does not necessarily tell us how to 
instruct novices, it does provide guidance on the types of 
organizing elements that might be useful for the novice to 
form. 

Forming Hierarchical  Organizations 
for Solving Problems 

Increasingly studies are showing that teaching and train- 
ing materials can be developed that will help learners form 
more useful representations of problem-solving knowledge. 
One such useful structure is a hierarchical one in which the 
higher level or conceptual aspects of a solution procedure 
form the skeleton of the solution approach. The higher level 
pieces are perhaps the ones the experienced solver initially 
accesses from memory. These pieces in turn can guide the 
search for lower level pieces that expand or instantiate the 
higher level ones. The various pieces of such a hierarchical 
structure are related typically through links that might 
indicate causal or other types of relationships (Gentner, 
1983). For instance, a goal to find the amount of work a 
worker has done would have a connection to a lower part of 
the hierarchy for finding the worker's rate and how long he 
or she has been working. 

Consider a hierarchical approach to solving a physics 
mechanics problem. Such an approach might include high- 
level goals such as to identify the relevant "systems" in the 
problem, to describe the systems, and to check the descrip- 
tion qualitatively (Heller & Reif, 1984). The description of 
the system can be broken down into subgoals to describe the 
motion of the system and to describe the forces acting on the 
system. The description of the forces can be broken down 
into subgoals to identify each object touching the system of 
interest as well to identify long-range forces such as 

gravitational effects. Eventually, as one moves lower in the 
hierarchy, the subgoals may call upon certain concrete 
methods or steps to achieve them rather than calling on more 
subgoals. 

Various studies have found that learners who form a 
hierarchical representation are typically able to solve novel 
problems more successfully than learners who were led to 
form a step by step organization of the problem-solving 
procedure (e.g., Dufresne, Gerace, Hardiman, & Mestre, 
1992; Eylon & Reif, 1984). In these studies, researchers 
usually derived what they believed to be a useful hierarchi- 
cal approach to problem decomposition and attempted to 
induce learners to internalize this approach by having them 
follow a prescribed method for solving or processing 
training problems. For instance, Heller and Reif (1984) 
formulated a model specifying the underlying knowledge 
and procedures needed to successfully solve mechanics 
problems. The authors required participants to solve three 
problems by adhering to a hierarchical approach for redescrib- 
ing each problem in terms of relevant forces. The model was 
contrasted with a "fiat" solution approach that intentionally 
omitted certain levels of the redescription process hierarchy 
such as checking for consistency between the direction of 
forces and the resulting acceleration (learners were not 
prevented from doing these checks, but they were not 
reminded to do them). Participants who were required to 
follow the more hierarchical approach were significantly 
better at redescribing novel problems and solving them. 1 

Subgoal  Learning 

The results of the studies mentioned previously are 
consistent with the claim that more hierarchically organized 
solution procedures may lead to better performance on novel 
problems compared to procedures that are essentially a set of 
memorized linear steps. As implicitly demonstrated earlier, 
one type of knowledge structure that would typically be 
associated with the higher levels of a hierarchy are goals and 
subgoals. 

The term subgoal has been used in at least two ways in the 
problem-solving and transfer literatures. One use has been to 
consider a subgoal something generated by a learner when 
he or she reaches an impasse during problem solving (e.g., 
Newell, 1990, chap. 4; VanLehn, 1988). A second use is to 
consider a subgoal to be a feature of a task structure that can 

1Heller and Reif (1984) were quick to point out that the 
hierarchical approach was only prescriptive and did not necessarily 
have any direct relationship to internal representations learners 
might have formed by following the model. It is also the case that 
besides containing certain high-level subgoals such as describing 
motion that the flatter approach lacked, the hierarchical approach 
included a number of low-level "hints," such as reminding learners 
to include properties such as mass in their drawings, that the flatter 
approach did not include. Thus, it is not entirely clear whether 
requiring participants to focus on a certain prescribed set of 
subgoals was most responsible for superior performance on new 
problems or whether the lower level procedural details were also 
crucial. This is not an issue in the present work because all learners 
saw the same procedural details in the training examples. 
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be taught to a learner (e.g., Catrambone & Holyoak, 1990; 
Dixon, 1987). In both cases it is usually predicted that a 
learner possessing an appropriate subgoal, or set of sub- 
goals, will be in a better position to solve new problems 
compared to learners who memorized only a set of steps. 

As used in the present article, a subgoal represents a 
meaningful conceptual piece of an overall solution proce- 
dure. To return to the problems given at the beginning of this 
article, a subgoal might be to find the amount of work done 
by each worker. To achieve such a subgoal might involve 
calling on lower level subgoals to find a worker's rate and to 
find how long the worker worked. These subgoals represent 
mini-problems in the context of solving the overall problem 
of determining how long it will take a worker to accomplish 
some task. 

Relatively little research has been conducted on how 
learners form subgoals; most efforts have been directed 
towards predicting transfer by learners assumed to already 
possess the subgoals. One attempt to explain how subgoals 
might be learned was made by Anzai and Simon (1979). 
They recorded the moves and verbal protocol of a learner as 
she solved the Tower of Hanoi problem multiple times. Over 
trials the learner began to chunk groups of moves. That is, 
she would make a set of moves in quick succession followed 
by a pause before the next set of moves. Anzai and Simon 
argued that each burst of moves represented a chunk. Each 
chunk may have reflected a subgoal the learner was achiev- 
ing by the particular burst of steps. 

Anzai and Simon (1979) suggested that subgoal acquisi- 
tion is greatly aided when the search space for operators 
(e.g., possible moves in the Tower of Hanoi problem) is 
constrained. When the search space is constrained, working 
memory load is reduced. One hypothesized advantage of a 
working memory load reduction is that a learner is better 
able to notice and remember a sequence of steps that led to a 
particular outcome (see also Sweller, 1988). In Anzai and 
Simon's model this working memory load reduction aids 
subgoal formation because a subgoal is formed when a 
learner is working towards a certain goal (perhaps derived 
from task instructions) and notices that a set of steps places 
him or her in a situation to carry out additional steps that 
ultimately achieve the goal. The learner will be better able to 
notice the result of the first set of steps, and be able to chunk 
that sequence of steps, if working memory load has been 
reduced. 

With respect to the current study, it is hypothesized that 
features of example solutions can cue a learner to chunk or 
group a set of steps. As a result, the learner's chances of 
discovering that a particular outcome, the subgoal, can be 
achieved by executing that series of steps is increased. One 
such cue that could encourage grouping, and thus subgoal 
learning, is a label. 

Results from the categorization literature are consistent 
with the previous speculation on the effect of a cue on 
grouping. Medin and his colleagues (e.g., Medin, Watten- 
maker, & Hampson, 1987; Wattenmaker, Dewey, Murphy, & 
Medin, 1986) found that when learners were provided with a 
theme during a training session---e.g., think of objects in one 

category as being or not being reasonable substitutes for a 
hammer they were quicker to learn categories. This was 
particularly true if causal or explanatory links to the 
category could be made for the features of the objects (see 
also Cabrera & Billman, 1996; Homa & Cultice, 1984). With 
respect to the proposed effect of a label on grouping, the 
categorization results suggest that features of example 
solutions that help learners form causal or explanatory links 
among solution steps will help learners form a category (i.e., 
a subgoal) that captures a useful relationship among the 
steps. 

Why  Subgoals Aid Problem Solving 

Subgoals can be used by a learner to help him or her solve 
novel problems because problems within a domain typically 
share the same set of subgoais, although the steps for 
achieving the subgoals might vary from problem to problem. 
For instance, in algebra problems dealing with work, 
subgoals for determining each worker's rate and time are 
typically present even though these rates and times will be 
found in different ways depending on the givens in the 
problem. 

Suppose the learner is attempting to achieve a particular 
subgoal in a novel problem and discovers that the old set of 
steps, perhaps learned from an example, will not work. The 
learner will have a reduced search space to consider when 
trying to adapt the method because he or she knows on 
which steps to focus for changing the procedure: the steps 
associated with the current subgoal. In contrast, a learner 
who has learned a solution procedure consisting of a single 
goal reached by a long series of steps will have a larger space 
to search for possible steps to change and thus, be less likely 
to determine successfully which steps need to be modified. If 
a particular subgoal needs to be achieved in a very different 
way than was demonstrated in the example (i.e., new steps 
are required rather than a modification of old steps), a 
learner possessing a representation with subgoals will have 
some guidance about what prior knowledge might be 
relevant for achieving that subgoal. A learner who memo- 
rized only a series of steps will be less likely to identify what 
prior knowledge he or she possesses that might be useful. 

Reed et al.'s (1990) findings are consistent with the 
previous interpretation. They found that learners tend to 
memorize a particular set of steps for solving problems, and 
changes to that procedure, even if the change results in a 
simpler procedure, tend to cause decrements in performance. 
This observation echoes the findings of Luchins (1942) who 
observed that when a person learned a procedure for solving 
a problem, he or she would frequently follow that procedure 
for subsequent problems even though a simpler procedure 
could be used. Learners appeared to be blocked from 
discovering the simpler procedure because the older, more 
complicated one could be used. However, in many problem- 
solving situations, old procedures will produce incorrect 
results or can not even be carried out because some of the 
information needed to carry out the old procedure might be 
missing. 
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Subgoal Learning Model  

The subgoai learning model (Catrambone, 1995, 1996) 
assumes that if a learner is cued that a set of solution steps 
belong together, he or she will be more likely to try to 
self-explain why those steps belong together, that is, to 
determine their purpose. This is similar to one of the types of 
self-explanations that Chi and her colleagues (Chi, Bassok, 
Lewis, Reimann, & Glaser, 1989; Chi, de Leeuw, Chiu, & 
LaVancher, 1994) have observed as students studied various 
texts in physics and biology. The subgoal learning model can 
be summarized as follows: 

1. A cue leads learners to group a set of steps. 
2. After grouping the steps, learners are likely to try to 

self-explain why those steps go together. 
3. The result of the self-explanation process is the 

formation of a goal that represents the purpose of that set of 
steps. 

Although most learners can presumably engage in a 
self-explanation process with varying degrees of success, 
good students seem better at determining the appropriate 
boundaries between meaningful groups of steps in a solution 
procedure (Chi et al., 1989). The use of a label in examples 
may serve as a cue to the boundaries (cf. Ausubel, 1968). 
Ben-Zeev (1995) suggested that the same induction mecha- 
nism is capable of forming correct and incorrect rules as a 
function of the information from which it works. Thus, a 
learner will have a better chance of forming the appropriate 
subgoals and methods for solving problems in a domain if 
the training examples are constructed in a way to aid the 
induction process. The subgoal learning model predicts that 
cues for grouping help this process. 

Although various indirect measures (e.g., problem- 
solving performance, learners' posttest descriptions of how 
to solve problems) have provided evidence supporting the 
claim that a cue can lead a learner to self-explain the purpose 
of a set of steps (Catrambone, 1994, 1995), one study also 
provided more direct evidence for this connection (Catram- 
bone, 1996, Experiment 2). In that experiment learners were 
asked to explain the solutions to the examples as they 
studied them. Participants studying examples that labeled a 
group of steps were more likely than other participants to 
make a statement about those steps being a unit and were 
also more likely to offer an explanation for what the steps 
accomplished. 

Testing Implications of  the Subgoal Learning Model  

The present research tests implications of the subgoal 
learning model by examining whether learning subgoals 
helps students overcome various difficulties in transfer to 
novel problems. A novel problem is defined as a problem 
that involves the same subgoal structure as the training 
examples but requires new or modified steps to achieve one 
or more of the problem's subgoals. 

The subgoal learning model will be tested through 
manipulations that, according to the model, should aid 
subgoal learning and thus improve transfer. For instance, the 

model assumes that a learner will self-explain a set of 
grouped steps in order to determine their purpose. The 
success of this process though presumably depends on, 
among other things, the relevant background knowledge the 
learner can bring to bear (cf. Chi et al., 1994). Thus, a 
manipulation involving background knowledge should af- 
fect subgoai learning in predictable ways. 

As a second manipulation, consider the semantics of a 
label used as a grouping cue. A label with ties to surface 
features of an example could lead a learner to form a subgoai 
that is linked to the surface features of the example rather 
than being more general. This link could affect subsequent 
transfer to problems that manipulate the relationship of the 
surface features and the solution procedure. 

In addition, the semantics of the label and a learner's 
background knowledge may interact to affect subgoal learn- 
ing. For example, a learner with a stronger background is 
expected to be more likely than a learner with a weaker 
background to form an appropriate subgoal from a label that 
is more abstract. The learner with the weaker background 
might require a label that has connections to the surface 
features of the problem in order to form a subgoal; such 
connections might provide additional guidance as to the 
purpose of the steps. However, the resulting subgoal could 
be inappropriately tied to surface features of the problem 
and thus, could be misleading for future problems. The 
learner with a stronger background would be better served 
with an abstract label because he or she is more likely to 
have the background knowledge needed to form the subgoal 
using an abstract cue and will not be exposed to a label that 
could potentially mislead him or her. 

A reasonable question to ask at this point is: why not 
directly state the subgoals to learners rather than embedding 
them in examples? There are two problems with this 
approach. First, learners exhibit a clear preference for 
learning from and referring to examples when faced with 
new problems (e.g., LeFevre & Dixon, 1986; Pirolli & 
Anderson, 1985). Fong, Krantz, and Nisbett (1986) and 
Cheng, Holyoak, Nisbett, and Oliver (1986) found that the 
addition of examples to their training materials aided 
learning. Fong and Nisbett (1991) suggested that supplemen- 
tary examples to a textual description of a solution proce- 
dure may provide learners with application or coding rules 
to help the learner map a solution onto a test problem. 
Second, although there have been a small number of 
successes teaching solution procedures directly (Fong et al., 
1986), most attempts have been unsuccessful (e.g., Reed & 
Bolstad, 1991). One possible reason for the tendency to fail 
at teaching procedures directly may be that the materials did 
not encourage learners to form subgoals that organized the 
steps but rather to focus primarily on memorizing the steps. 

Forming and Adapting Solution Procedures 

Various researchers proposed that the following events 
occur when a learner is attempting to use a previously 
encountered example to help him or her solve a new 
problem: encoding of the original example and the test 
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problem, retrieval of that example when working on the test 
problem, mapping the solution from the original example to 
the test problem (that is, lining up features of the problem to 
features of the example), and finally perhaps forming a 
generalization or schema that covers the solution approaches 
used in the original example and in the test problem (see 
Gick & Holyoak, 1983; Keane, 1987; Reeves & Weisberg, 
1994; Ross 1987, 1989). 

Two features of the previous scenario need to be ad- 
dressed with respect to the current article. First, the mapping 
phase may require the learner to adapt the solution proce- 
dure from the example. That is, besides bringing into 
correspondence the relevant parts of the example and the 
problem, the learner might need to alter the solution from the 
example if the same steps from the example can not be used 
in the problem (Novick & Holyoak, 1991). Thus, a failure to 
solve the test problem may not be a failure in mapping (i.e., 
the learner imports the relevant example's solution proce- 
dure to the test problem) but rather a failure in adapting the 
solution to make it work for the current problem. For 
instance, Chen (1995) created diagrams that suggested a 
particular implementation of a solution. He found that if a 
test fiddle involved the same solution suggested by a 
diagram but required a change in implementation details, 
performance would drop. This drop was in addition to any 
effects due to surface features or conceptual similarity 
between the diagram and the riddle. Novick and Holyoak 
(1991) found a similar result with algebra word problems. In 
their study, learners would recognize the relevance of a 
particular procedure learned from an example for a new 
problem, but had difficulty figuring out how to modify the 
procedure for the problem. Subgoals can aid this adaptation 
process. 

The second feature from the previous scenario that is 
relevant to the current article is that a learner might form a 
generalization before attempting a test problem (Ahn, Brewer, 
& Mooney, 1992). If examples are constructed in such a way 
as to encourage the learner to discover the higher level 
features, then the solution procedure might be organized 
around these features before the learner encounters a new 
problem (Catrambone, 1996; Clement, Mawby, & Giles, 
1994; of. Ross & Kennedy, 1990). 

The present article takes the stand that appropriately 
designed examples can lead learners to form more general- 
ized solution procedures such as ones organized around 
subgoals. The methods learned to achieve those subgoals 
will possibly need to be adapted when the learner encounters 
new problems. A learner will have a better chance of 
adapting a solution procedure that is organized by subgoals, 
and methods for achieving those subgoals, compared to a 
solution procedure that consists only of a long series of 
steps. 

Overview of  Experiments 

In the materials used in the current study, the ultimate goal 
of each problem is to calculate a probability. The solution 
procedure for achieving this goal involves a number of steps, 
a subset of which constitutes a sequence of multiplication 

and addition operations that can be grouped under the 
subgoal: "find the total frequency of the event." 

Consider the No Label solution to the probability example 
in Table 1 involving the Poisson distribution. 2 A learner 
could study this example and memorize the steps for solving 
a problem that involves the same set of steps even if the new 
problem involved farmers and tractors instead of lawyers 
and briefcases. For example, after studying the No Label 
solution, the learner's knowledge for the part of the solution 
procedure that involves finding h, the average, might be 
represented as 

Goal: Find h 
Method: 
1. Multiply each category (e.g., owning exactly zero 

briefcases, owning exactly one briefcase, etc.) by its 
observed frequency. 

2. Sum the results. 
3. Divide the sum by the total number of lawyers to 

obtain the average number of briefcases per lawyer. 

This representation would be effective for problems that 
involve calculating the average in the same way as the 
example. However, this representation fails to capture the 
fact that the first line of the No Label solution in Table 1 also 
involves calculating a total frequency. A novel problem that 
requires finding total frequency in a different way than in the 
example might cause problems for the learner using the 
previous representation. For instance, consider the problem 
in Table 2. In this problem the total frequency is calculated 
by adding a set of simple frequencies. This is a less complex 
method than was used in the example, but the learner might 
not be able to construct it because the subgoal for finding the 
total frequency, and an instance of a method for achieving it, 
were never isolated. If the learner had formed the following 
representation, then his or her chance of solving the first 
problem in Table 2 might be better. 

Goal: Find k 
Method: 
1. Goal: Find total number of briefcases 

Method: 
a. Multiply each category by its observed fre- 

quency. 
b. Sum the results to obtain the total number of 

briefcases. 
2. Divide the total number of briefcases by the total 

number of lawyers to obtain the average number of 
briefcases per lawyer. 

This representation identifies the subgoal of finding the 
total and isolates the steps involved in achieving that 
subgoal, thus the learner can focus on modifying that subset 
of steps. 

Catrambone (1995, 1996) found that learners studying the 
Superficial or Abstract Label solutions (see the second and 
third solutions in Table 1) to the example were more likely 
than No Label learners (who studied the first solution in 
Table 1) to find the total frequency as measured by their 

2 The Poisson distribution is often used to approximate binomial 
probabilities for events occurring with some small probability. The 
Poisson equation is P(X = x) = [(e-~)(hx)]/xl, where k is the 
average (the expected value) of the random variable X. 
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Table I 
Training Example With Solutions Using Superficial, Abstract, or No Labels 

A judge noticed that some of the 219 lawyers at City Hall owned more than one briefcase. She 
counted the number of briefcases each lawyer owned and found that 180 of the lawyers owned 
exactly one briefcase, 17 owned two briefcases, 13 owned three briefcases, and 9 owned four 
briefcases. Use the Poisson distribution to determine the probability of a randomly chosen 
lawyer at City Hall owning exactly two briefcases. 

No label 

1(180) + 2(17) + 3(13)+4(9) 289 
E(X) = 

219 219 

= 1.32 = k = average number of briefcases owned per lawyer 

[(e-~)(hx)] 
P(X = x) = 

x! 

P(X = 2) = 
[(2-718-L32)(1.322)] (.27)(1.74) 

2! 2 
= .235 

Superficial label 

E(X) = 
1(180) + 2(17) + 3(13) + 4(9) total numberofbriefeases owned 289 

219 219 219 

= 1.32 = k = average number of briefcases owned per lawyer 

[(e-X)(Xx)] 
P ( X = x ) =  

x! 

P ( X = 2 )  = 
[(2.718-L32)(1.322)] (.27)(1.74) 

2! 2 
= .235 

Abstract label 

E(X) = 

1(180)+2(17) + 3(13) + 4(9) 

219 

289 

219 219 

= 1.32 = k = average number of briefcases owned per lawyer 

[(e-~)(Xx)] 
P(X = x) = 

x[ 

[(2.718-L32)(1.322)] (.27)(1.74) 
P(X = 2) = = = .235 

2! 2 

success at solving problems such as the first one in Table 2. 3 
This was taken as initial evidence that the former groups 
tended to learn the subgoal to find the total frequency, 
whereas the latter group did not. 

The present set of  experiments extend the prior work by 
testing implications of  the subgoal learning model. Experi-  
ment 1 tests the prediction that background knowledge 
should influence how successfully a learner can self-explain 
the purpose for a set of  grouped steps and thus, how likely 
the learner is to form the subgoal for those steps. Experiment 
2 seeks to test whether subgoal learning affects transfer after 

a delay between training and testing because prior work has 
found that learners tend to be less successful solving novel 
problems after a delay between training and testing (e.g., 
Nisbett, Fong, Lehman, & Cheng, 1987). Experiment 3 
explores the effect of  subgoal learning on learners '  reliance 

In prior studies (e.g., Catrarnbone, 1995, 1996) the Superficial 
Label and Abstract Label solutions were referred to as Meaningful 
Label and Less Meaningful Label solutions, respectively. However, 
the terms Superficial and Abstract seem to better capture essential 
characteristics of the labels as they are used in these studies. 
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Table 2 
Sample Test Problems 

Total frequency calculated by adding simple frequencies 

Over the course of the summer, a group of five kids used to walk along the beach each day col- 
leering seashells. We know that on Day 1 Joe found four shells, on Day 2 Sue found two shells, 
on Day 3 Mary found five shells, on Day 4 Roger found three shells, and on Day 5 Bill found 
six shells. Use the Poisson distribution to determine the probability of a randomly chosen kid 
finding three shells on a particular day. 

Solution (Not Seen by Participants) 

4 + 2 + 5 + 3 + 6  
E(X) = 

5 

20 
~ n  5 = 4.0 = k = average number of shells per kid 

[(2.718-4.°)(4.03)] (.018)(64) 
P(X = 3 )  = - - - . 1 9 5  

3! 6 

Total frequency provided directly 

A number of celebrities were asked how many commercials they made over the last year. The 20 
celebrities made a total of 71 commercials. Use the Poisson distribution to determine the prob- 
ability that a randomly chosen celebrity made exactly 5 commercials. 

Solution (Not Seen by Participants) 

71 
E(X) = ~-~ = 3.55 = h = average number of commercials per celebrity 

[(2.718-3"55)(3.555)] (.029)(563.8) 
P(X= 5) = - .135 

5! 120 

on surface features when they attempt to transfer example 
solution procedures to test problems. Finally, Experiment 4 
provides a replication of Experiment 3 and tests whether 
generalizations occur primarily during the study of examples 
or when the examples are applied to an initial test problem, 
or both. It also uses a talk aloud procedure in order to 
provide converging evidence for subgoal learning. 

Exper iment  1 

The aim of Experiment 1 was to test an implication of the 
subgoal learning model that if a learner receives a label as a 
cue to group a set of steps, the likelihood of the learner 
forming an appropriate subgoal is dependent upon the 
semantic content of the label and the learner's background 
knowledge. Although prior studies (e.g., Catrambone, 1996) 
have manipulated semantic content as a way of influencing 
subgoal learning, the effects of learners' backgrounds have 
not been examined. 

Eylon and Reif (1984) found that learners, except for 
those of low academic achievement, benefited from material 
that was hierarchically well organized. On the other hand, 
Dufresne et al. (1992) found that learners who tended to 
offer surface feature-based explanations for similarity judg- 
ments about physics problems--and therefore were presum- 
ably students of lower achievement--were the ones who 
benefited most from training that focused on teaching a 
hierarchical approach to classifying problems. 

It may be the case that learners with weaker math 
backgrounds need labels with connections to surface fea- 
tures of examples because they provide additional guidance 
for the self-explanation process. Learners with a weak math 
background might look at a series of addition and multiplica- 
tion steps for the No Label solution in Table 1, that is 

1(180) + 2(17) + 3(13) + 4(9), 

and fail to group them. Because of this they might not 
perform the self-explanation that leads to the realization that 
those steps calculate a total. A superficial label such as total 
number of briefcases owned should cue the grouping and aid 
self-explanation whereas an abstract label such as 1~ might 
not provide sufficient guidance for self-explanation. Con- 
versely, for learners with a stronger background, an abstract 
label such as 1) should cue the grouping and the learner will 
be more likely to have the ability to successfully self-explain 
the purpose of the steps. 

The previous argument leads to the prediction that 
participants with a stronger background should be equally 
likely to learn the subgoal to find a total in the Superficial 
and Abstract Label conditions. The Superficial Label and 
Abstract Label solutions (see Table 1) label the steps for 
finding the total frequency rather than merging them with the 
overall set of steps for finding the average. Learners with a 
strong background who study example solutions with either 
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superficial or abstract labels are predicted to find h correctly 
on the novel test problems about equally often and should 
outperform the No Label group. However, for participants 
with a weaker math background, the semantic content of  the 
label is predicted to play a larger role in helping them to 
understand the purpose of  the labeled steps. For these 
learners, those receiving the superficial label should be more 
likely to form the subgoal to find a total than those receiving 
the abstract label. Therefore, participants with a weaker 
background in the Superficial Label condition should be 
more successful than similar students in the Abstract and No 
Label conditions at finding h on the novel problems. 

Subgoal learning in Experiment 1 was assessed through 
problem-solving performance as well as learners' descrip- 
tions of  how to solve problems in the domain. It was 
hypothesized that if a person learns a subgoal, such as find a 
total, then he or she would be more likely to solve novel 
problems as well as to mention the subgoal in a description 
compared to a learner who did not learn that subgoal. These 
results would be found presumably because the solution 
procedure would be more hierarchically organized com- 
pared to one that was simply a list of  steps. 

M e ~ o d  

Participants. Participants were 150 students recruited from 
several Atlanta-area colleges who received course credit or pay- 
ment for their participation. In order to participate in the experi- 
ment, a student either had to have taken no college-level calculus 
courses or to have had between two and four college-level 
mathematics courses beyond introductory calculus. 4 Additionally, 
students who had taken a prior probability course were excluded 
from the experiment. 

Materials and procedure. All participants initially studied a 
cover sheet that briefly described the Poisson distribution and how 
it could be used as a replacement for more cumbersome techniques 
for calculating probabilities involving events that could be catego- 
rized as successes and failures. The Poisson equation was presented 
along with a simplified notion of a random variable. 

Participants were randomly assigned to one of three conditions 
with the constraint that of the 50 participants per condition, 25 had 
a stronger (calculus) math background and 25 had a weaker (no 
calculus) math background. The Superficial Label group studied 
three examples demonstrating the weighted average method for 
finding h in which the steps for finding the total frequency were 
given a label that was assumed to have meaning to the participants 
and made mathematical sense given the steps that preceded it (see 
the Superficial Label solution in Table 1 for an example). The 
Abstract Label group studied examples in which the steps for 
finding the total frequency were labeled with 12, which was 
assumed to have little meaning for the participants in the context of 
the examples (see the Abstract Label solution in Table 1). The No 
Label group studied examples in which the steps for finding the 
total frequency were not labeled (see the No Label solution in Table 1). 

After studying the examples, participants were asked to describe 
how to solve problems in the domain. The instructions were 

Suppose you were going to teach someone how to solve 
Poisson distribution problems of the types you have just 
studied. Please describe the procedure or procedures you 
would give someone to solve these problems. Please be as 
complete as possible. 

After writing their descriptions, participants solved six prob- 

lems. The first two were isomorphic to the example in Table 1; that 
is, they required the use of the same step-by-step procedure 
(weighted average method) for finding h. These problems were 
given first so that participants would be able to immediately see 
that the prior examples were relevant for solving the test problems. 
The next four problems required new ways of finding the total 
frequency: either by recognizing that the value was given directly 
in the problem (see the second problem in Table 2 for an example) 
or by adding simple frequencies (see the first problem in Table 2). 
Participants were told not to look back at the examples when 
writing their descriptions or solving the test problems. 

Two raters independently scored the explanations and agreed on 
scoring 90% of the time. Disagreements were resolved by discus- 
sion. 

Design. The independent variables were math background 
(stronger [calculus] or weaker [no-calculus]) and type of example 
solutions studied (Superficial Label, Abstract Label, No Label), 
resulting in six experimental groups. The dependent measures were 
descriptions for how to solve the problems and transfer perfor- 
mance on the six test problems. 

Results 

Descriptions of how to solve problems. Because it was 
hypothesized that there would be an interaction between 
label type and math background, the following predictions 
were made. First, for learners with stronger math back- 
grounds, those receiving a label would be more likely to 
mention the notion of  finding a total compared to No Label 
participants. The Abstract Label group might mention the 
notion of  finding " ~ "  rather than finding the "total number" 
of  things if there was some tendency by learners to repeat the 
wording from examples. Second, for learners with weaker 
math backgrounds, it was predicted that Superficial Label 
participants would be more likely than the other two groups 
to mention the notion of  finding a total. 

Participants in the Abstract Label condition were the only 
ones to mention fL This makes sense given that this term is 
arbitrary and did not appear in the solutions seen by the other 
two groups. However, a frequency analysis measuring the 
association between condition and whether a participant 
mentioned the notion of  finding a total, f~, or neither, would 
be inflated because two of  the groups would have zero 
frequency for mentioning 12. To compensate for this, 
participants in the Abstract Label condition who mentioned 
the notion of  finding 12, even if they did not also explicitly 
call this value a total, were counted in Table 3 as having 
mentioned a total. 

On the basis of  the scheme described previously, all 
participants were categorized into one of  two groups: those 
mentioning a total (and/or l~) in their descriptions versus 
those mentioning neither. If  participants are collapsed across 
label condition, those with a stronger math background 
mentioned total/~ more often than those with a weaker 
background,  X2(2, N = 150) = 7.11, p = .008 (see Table 3). 
I f  only participants with a stronger math background are 

4 There is no theoretical justification for using calculus experi- 
ence as a discriminator of math background. However, discussions 
with mathematics professors at local colleges suggest that it might 
be appropriate. 
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Table 3 
Percentage of Participants Mentioning Finding a Total 
in Their Descriptions as a Function of Label and Math 
Background (Experiment 1) 

Group 

Math Superficial Abstract No 
background label label label M 

Stronger 76 56 20 51 
Weaker 44 32 12 29 

M 60 44 16 40 

Note. N = 25 for each cell. 

considered, there was a significant difference among the 
groups in the frequency of mentioning total/O, )(2(2, N = 75) = 
16.11, p = .0003. Pairwise comparisons indicate that both 
label groups mentioned total/O more often than the No 
Label group (vs. Superficial: X2(1, N = 50) = 15.70, p = 
.0001; vs. Abstract: ×2(1, N = 50) = 6.88, p < .009), 
whereas there was no reliable difference between the two 
label groups, X2(1, N = 50) = 2.23, p = .14. If  only 
participants with a weaker math background are considered, 
there was again a significant difference among the groups in 
the frequency of mentioning total/O, ×2(2, N = 75) = 6.30, 
p = .04. Pairwise comparisons indicate that the Superficial 
Label group mentioned total/O more often than the No 
Label group, ×2(1, N = 50) = 6.35, p < .02, whereas there 
was a marginal difference between the Abstract Label and 
No Label groups, X2(1, N = 50) = 2.91, p = .083. There was 
no reliable difference between the two label groups, X2(1, 
N = 50) = 0.76, p = .38. 

Transfer. Participants were given a score of 1 for a given 
problem if they found h correctly and a score of 0 otherwise. 
The scores for the two problems that were isomorphic to the 
training examples, Problems 1-2, were summed, creating a 
score from 0 to 2 for performance on those problems. 
Similarly, the scores for the four novel problems, Problems 
3-6, were summed, creating a score from 0 to 4 for 
performance on those problems. 

All participants except six in the Superficial Label group, 
six in the Abstract Label group, and four in the No Label 
group solved both isomorphic problems correctly. 

Atwo-way analysis of variance on performance across the 
four novel test problems was carded out with label condition 

Table 4 
Number of Novel Test Problems Solved Correctly as a 
Function of Label and Math Background (Experiment 1) 

Group 

Math Superficial Abstract No 
background label label label M 

Stronger 3.04 2.88 1.44 2.45 
Weaker 2.72 0.80 0.64 1.39 

M 2.88 1.84 1.04 1.92 

Note. N = 25 for each cell. Maximum possible score for any 
cell = 4. 

and math background as the factors. Table 4 presents the 
average scores on these problems as a function of group. 
There was a significant effect of label type, F(2, 144) = 
13.60, p < .0001, MSE = 3.13, and math background F(1, 
144) = 13.64, p = .0003. There was also a significant 
interaction between these factors, F(2, 144) = 3.31, p = 
.039. The most typical mistake that students made on these 
problems was to write in the solution area that not enough 
information was given to solve the problem. 

If  only participants with a stronger background are 
considered, pairwise comparisons indicated that the two 
label groups did not perform differently (p > .7). The 
Superficial Label group outperformed the No Label group 
(p = .004; requiredp = .008 using Shaffer (1986) sequential 
Bonferroni pairwise comparisons for providing a familywise 
oL of .05 for multiple comparisons; see also Seaman, Levin, 
& Serlin, 1991). The Abstract Label group showed a 
tendency to outperform the No Label group, but the 
difference was not reliable (p = .01; required p = .008). 
However, given the directional prediction that the Abstract 
Label group would outperform the No Label group, it would 
be appropriate to conduct a one-tailed test. Doing this, the 
difference between the groups produces a p value of .005 
which is less than the required value of .008. These results 
are consistent with those obtained in prior studies (Catram- 
bone, 1995, 1996). 

If  only participants with a weaker background are consid- 
ered, the Superficial Label group outperformed the other two 
groups (both ps < .0005 with required p = .005). There was 
no significant difference between the Abstract and No Label 
groups (p > .7). 

Transfer to novel problems as a function of descriptions. 
In order to produce a strict test of the relationship between 
descriptions and transfer in novel problems, No Label 
participants were excluded from the analysis because it was 
demonstrated that these participants performed differently 
than the label groups in transfer. Considering only label 
participants then, those who mentioned total/l) (n = 52) 
transferred more successfully than those who mentioned 
neither (n = 48), F(1, 98) = 97.30,p < .0001, MSE = 2.96, 
Ms = 3.30 and 1.33, respectively. If  this analysis is repeated 
separately for participants with stronger and weaker math 
backgrounds, similar results are obtained. For participants 
with stronger math backgrounds, those mentioning total/O 
(n = 33) outperformed those who did not (n = 17), 
F(1, 48) = 44.40, p = .0001, MSE = 2.28, Ms = 3.64 and 
1.65, respectively. For participants with weaker math back- 
grounds, it was also found that those mentioning total/O 
(n = 19) outperformed those who did not (n = 31), 
F(1, 48) = 29.24, p = .006, MSE = 3.50, Ms = 2.74 and 
1.16, respectively. 

Discussion 

The purpose of Experiment I was to test an implication of 
the subgoal learning model that a learner's ability to form an 
appropriate subgoal---or to adapt a method for achieving 
that subgoal in a novel problem is dependent upon the 
semantic content of the label and the learner's background 
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knowledge. The present experiment found that the semantic 
content of the label appeared to have less effect on subgoal 
formation for learners with a stronger math background 
compared to learners with a weaker background. Although 
learners of both backgrounds showed a decline in the 
likelihood of mentioning the subgoal of finding a total as a 
function of whether the label was superficial versus abstract 
versus not present, the statistical effects were different. For 
learners with a stronger math background, both label groups 
outperformed the No Label group as measured by the 
description and transfer tasks. This result is consistent with 
prior studies that have used learners with strong math 
backgrounds (Catrambone, 1995, 1996). However, for learn- 
ers with a weaker math background, the results changed. 
Learners in the Superficial Label condition mentioned the 
subgoal of finding a total in their descriptions more often 
than learners in the No Label condition, whereas the 
frequency difference was less striking for Abstract versus No 
Label participants. In addition, while Superficial Label 
participants showed superior transfer compared to the No 
Label participants on the novel problems, there was no 
difference between the Abstract and No Label groups. 

Overall the results suggest that the presence of a label, and 
not necessarily its semantic content, can make a learner with 
an appropriate background more likely to successfully 
attempt to self-explain the purpose of a set of steps. In 
addition, the likelihood of a learner being able to adapt a set 
of steps for achieving the subgoal appears to be affected by 
the learner's background. This is consistent with Novick and 
Holyoak's (1991) finding that learners' mathematical back- 
ground affected their success at adapting procedures. For 
learners with a weaker background, the semantic content of 
the label appears to play a role in subgoal formation, 
possibly by constraining the self-explanation process. For 
stronger learners, such a "crutch" is less important. 

Although the results of this experiment indicate that a 
learner, at least one with appropriate background knowl- 
edge, can form an appropriate subgoal, and adapt a set of 
steps, on the basis of an abstract cue in an example solution, 
it is reasonable to ask why a teacher or textbook writer 
would choose to use such a cue. That is, would it not be 
sounder educational practice to provide the learner with a 
label tied to problem features that helps learners form a 
subgoal more easily? 

There are at least two reasons why the use of an abstract 
label might aid performance on novel problems more than a 
label tied to surface features, at least under certain circum- 
stances. First, consider the self-explanation process postu- 
lated by the subgoal-learning model as the learner attempts 
to determine the purpose of a set of steps. The cue is 
assumed by the model to help the learner realize that the 
steps go together. The learner must then determine the steps' 
collective purpose. The learner presumably uses at least two 
sources of information in order to do this. One source is 
background knowledge as suggested by the Experiment 1. 
The second source is the semantic information in the cue 
itself. Consider the cue in the Superficial Label solution in 
Table 1. This label states that a set of steps calculates the 
total number of briefcases owned. Given this information, 

the learner might form the subgoal to calculate the total 
number of "things" (that is, inanimate objects as opposed to 
people). This is a too restrictive subgoal because, as will be 
shown later, one can easily construct problems that require 
calculating other totals such as the number of people. A 
learner who had seen the more abstract label might form the 
subgoal to find a total without necessarily tying it to objects. 
This subgoal is more general and closer to being formally 
correct (the most formal view would be "total frequency of 
the event"). 

The second reason why an abstract label could aid 
performance more than a superficially connected label is the 
assumption that an abstract label would require the learner to 
work harder to form a subgoal to explain the purpose of the 
steps than. if the label were tied to the surface features of the 
problems. The extra effort required might help the learner 
integrate the subgoal and steps with prior knowledge, thus 
making the use of that information more flexible (Chi et al., 
1994). It might also help learners to better remember and 
adapt this information when tested on novel problems after a 
delay (el. McDaniel & Schlager, 1990). 

Experiments 2 and 3 tested these implications of the 
subgoal learning model. The focus of Experiment 2 was to 
examine whether the hypothesized extra effort required to 
form subgoals from abstract labels will lead to superior 
transfer performance after a delay. The focus of Experiment 
3 was to examine the notion that abstract labels can aid 
problem solving transfer when the roles of surface features 
in test problems are changed from their roles in training 
examples. 

Experiment  2 

Experiment 1 suggested one reason why labels might be 
used in example solutions: to help learners form solution 
procedures organized by subgoals. A reason to use abstract 
labels might be to induce learners to work harder to 
determine the purpose of a set of steps, thereby increasing 
the likelihood they will access background knowledge to 
form the subgoal. This interpretation is consistent with the 
findings of Catrambone and Holyoak (1989), who observed 
that participants who answered a set of fairly directive 
comparison questions about a set of stories---questions 
designed to help people focus on the crucial structural 
features--were much more likely to access and apply/adapt 
the solution from those stories to a new problem even after a 
week's delay compared to people who did not answer the 
questions. 

The effort required to self-explain the purpose of a set of 
steps is assumed to be greater when a learner receives an 
example solution using abstract labels. Labels tied to surface 
features might encourage the learner to take a short-cut to 
explain the steps' purpose (i.e., the label almost becomes the 
explanation), leading the learner to form a subgoal that is 
potentially misleading. In addition, self-explanations can fill 
gaps in a text (McNamara & Kintsch, 1996) as well as help a 
learner to integrate the new knowledge with preexisting 
knowledge, thereby making the new information more 
memorable and accessible (Chi et al., 1994). Abstract labels 



SUBGOALS AND PROCEDURES 365 

presumably encourage or require more gap filling than 
superficial labels and thus, can lead to more integration and 
memorableness of the subgoal and steps (at least for learners 
with the background knowledge to enable the gap filling). 
The result should be superior performance on novel prob- 
lems after a delay between training and testing. Experiment 
2 was designed to test this possibility. Although effort per se 
is not directly measured, it is assumed, other things being 
equal, that learners who expend more effort on self- 
explanation will be more likely to remember the information 
after a delay compared to those who expend less effort. 

Learners with "stronger" math backgrounds were used in 
this and subsequent experiments. The rationale for this 
choice was based on the following considerations: (a) 
because students are typically required to possess the 
appropriate background in order to take a particular course, 
it seems reasonable to focus on students with stronger math 
backgrounds in experiments using probability materials 
which are often considered quite challenging; (b) this and 
subsequent experiments use a variety of  manipulations and 
the number of participants required would be doubled if the 
background factor was included each time; (c) it was easier 
to find students with stronger math backgrounds at Georgia 
Tech. 

M e ~ o d  

Participants. Participants were 180 students recruited from 
introductory psychology classes at the Georgia Institute of Technol- 
ogy who received course credit for their participation. None of the 
students had taken a probability course prior to participating in the 
experiment, but all had at least one college-level calculus course. 

Materials and procedure. Participants studied the same cover 
sheet and examples as in the prior experiment and were randomly 
and evenly assigned to one of three label conditions: Superficial 
Label (n = 60), Abstract Label (n = 60), and No Label (n = 60). 
Within each condition half the participants were tested immediately 
after studying the examples, whereas the other half were tested one 
week later. Paxticipants in the delay condition were told that one of 
the tasks they would be doing when they returned a week later 
would be to solve problems related to the ones they studied during 
the first session and because of this, they should do their best to 
remember what they learned. 

Participants solved the same six test problems used in Experi- 
ment 1 and were scored in the same way. 

Design. The independent variables were type of example 
solution studied (Superficial Label, Abstract Label, No Label) and 
timing of the posttest (delay, no delay), thus there were six groups 
in the experiment. The dependent measure was performance on the 
six test problems. 

Results and Discussion 

Test problems were scored as in the prior experiment. 
Relatively few participants failed to solve the isomorphic 
problems. A total of 11 participants failed to solve either one 
or both of the isomorphs; seven of these participants were in 
the delay condition. 

There were significant effects due to type of label and 
delay on performance on the novel problems (see Table 5). 
Participants receiving a label solved the novel problems 

Table 5 
Number of  Novel Test Problems Solved Correctly 
as a Function of Label and Delay (Experiment 2) 

Group 

Superficial Abstract No 
Delay label label label M 

No 3.47 3.17 2.33 3.02 
Yes 1.80 3.00 1.77 2.22 

M 2.63 3.18 2.05 2.62 

Note. N = 30 for each cell. Maximum possible score for any 
cell = 4. 

more successfully than No Label participants, F(2, 174) = 
5.41,p = .005, MSE = 2.98, Participants tested immediately 
performed better than those tested after a delay, F(1,174) = 
9.67, p = .002. The interaction of label and delay was also 
significant, F(2, 174) = 9.05, p = .05. The interaction, 
coupled with the results in Table 5, suggest that participants 
receiving superficial labels in the examples showed a larger 
drop in performance going from no delay to delay whereas 
the decrement was less for learners in the Abstract Label 
condition. 

In order to investigate the previous possibilities more 
closely, Shaffer (1986) sequential Bonferroni pairwise com- 
parisons (familywise a = .05) were conducted. For partici- 
pants in the No Delay condition, both Abstract and Superfi- 
cial Label participants outperformed No Label participants 
(both ps less than the required .008, one-tailed). There was 
no significant difference between the Abstract and Superfi- 
cial Label conditions (p = .5). For participants in the Delay 
condition, the Abstract Label participants outperformed the 
Superficial and No Label participants (both ps less than the 
required .005, one-tailed). There was no significant differ- 
ence between the Superficial and No Label conditions 
(p = .94). 

Another way of examining the relative effects of delay on 
the different label conditions is to compare performance 
across delay separately for each label condition. For partici- 
pants in the Superficial Label condition, there was a 
significant difference on performance on novel test problems 
as a function of delay, F(1, 58) = 16.30, p = .0002, MSE = 
2.56. Conversely, for participants in the Abstract Label 
condition, there was not a significant effect due to delay, F(1, 
58) = 0.16,p = .69. 

These results indicate that learners who presumably had 
to work harder to form a subgoal to represent the purpose of 
a set of steps were more likely to remember the subgoal--as 
measured by problem-solving performance---when they 
were tested after a delay compared to those who were 
assumed to not have had to work as hard. Learners who were 
less likely to be induced to form a subgoal transferred less 
successfully both before and after a delay. These results are 
consistent with the findings of Catrambone and Holyoak 
(1989) who noted that those learners who produced better 
written descriptions of the commonalities of example ana- 
logs were also the ones who were more likely to import the 
solution from those analogs to a target problem. In both the 
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present study and in Catrambone and Holyoak's study, 
learners who extracted the common structure of the training 
examples (in the present case the common structure would 
be the subgoals) were more likely to successfully apply them 
to target problems in which the details differed. 

Experiment  3 

Most participants in Experiment I who mentioned finding 
a total in their descriptions described the total in terms of 
objects or things: 87% in the Superficial Label condition and 
82% in the Abstract Label condition. Although the percent- 
ages are similar for the two label conditions keeping in 
mind that more Superficial Label than Abstract Label 
participants mentioned the idea of a total at all--it is 
possible that this surface feature connection was strongest 
for participants in the Superficial Label condition because 
the label in this condition explicitly mentioned objects from 
the problems. One implication of forming a subgoal that is 
tied to surface features is that the learner is confusing surface 
and structural features of the domain. A way to test this 
possibility is to construct test problems that systematically 
manipulate the relationship between surface and structural 
features and observe the degree to which the features guide 
learners' performance. 

For instance, Ross (1987, 1989) provided students with 
various types of probability examples to study such as 
problems dealing with permutations and combinations. The 
permutation examples involved people picking objects in a 
certain order (e.g., scientists, in order of seniority, picking 
from a pool of computers at random). Because the examples 
involved people picking objects, the number of objects 
provided the starting value for the denominator in the 
permutation equation. Some of the test problems involved 
people being assigned to objects (e.g., as a particular 
computer is unpacked, a randomly chosen scientist is 
assigned to use it). In these cases the number of people in the 
problem provided the starting value for the denominator. 
However, students typically placed the number of objects in 
the denominator. Students appeared to confuse the surface 
features of objects and humans with domain-relevant fea- 
tures such as the set of possible choices (see also Bassok et 
al., 1995). 

With respect to the experimental materials used in the 
present study, most learners, at least at the college level, 
were assumed to be sufficiently sophisticated to generalize 
"total number of briefcases" (and tractors and guitars; the 
objects in the other two training examples). The generaliza- 
tion that might be formed though was unclear. One possibil- 
ity was that the generalization would be "total number of 
objects" if all the examples involved humans using objects. 
Learners forming this generalization would be predicted to 
be more successful solving novel problems that require the 
total number of objects to be calculated in new ways 
compared to learners not forming this generalization. How- 
ever, given that this generalization is still tied to a surface 
feature, objects, these learners might fail to solve correctly a 
novel problem that required the number of humans, rather 
than objects, for the total. Learners studying examples with 

the abstract label who form the subgoal for finding a total 
might be less likely to have this subgoal tied to a surface 
feature. As a result, these learners would be less likely 
to make mistakes on novel problems that switch the roles 
of humans and objects from their roles in the training 
examples. 

In Experiment 3 all participants studied examples demon- 
strating the weighted average method for finding h (see 
Table 1 for an example) and saw either the Superficial Label, 
Abstract Label, or No Label solution. Performance predic- 
tions varied as a function of training condition and type of 
test problem. 

The first four test problems were isomorphic to the 
training examples. The first pair involved calculating the 
total number of objects in order to find h and the second pair 
involved calculating the number of people. Participants in 
all conditions were expected to solve the first pair with little 
difficulty. Conversely, the second pair of isomorphs were 
expected to give participants difficulty because they in- 
volved a reversal in the roles of humans and objects (see the 
first problem in Table 6 for an example). These problems 
provided the numbers needed to calculate a total based on 
number of people. In order to make it possible for partici- 
pants to solve this problem incorrectly, a second set of 
numbers was also present in these two problem statements 
that allowed one to calculate the total number of objects as 
was done in the training examples. In the first problem in 
Table 6, the correct way to calculate the total is to multiply 
each category of cab (e.g., those driven by just one driver, 
those driven by just two drivers, etc.) by the number of cabs 
that fell into each category. This approach provides the total 
number of drivers (who had driven cabs) and thus allows the 
calculation of average number of drivers per cab. This 
ultimately allows one to calculate the probability of a 
randomly chosen cab being driven by a certain number of 
drivers. 

The incorrect approach to the first problem in Table 6 
would be to take each category of driver (e.g., those that had 
driven just one cab, those that had driven two cabs, etc.) and 
multiply it by the number of drivers that fell into each 
category. This would allow the calculation of the average 
number of cabs per driver which would ultimately allow one 
to calculate the probability of a randomly chosen driver 
having driven a certain number of cabs. 

It was expected that when confronted with these two sets 
of numbers in the second pair of isomorphs, many partici- 
pants would choose the set (which always came first) that 
allowed one to multiply categories of people by the number 
of people in each category. This was the approach used in the 
training examples for finding the total number of objects. It 
was predicted that on the second pair of isomorphs the 
Superficial Label and No Label participants would be more 
likely than Abstract Label participants to calculate, inappro- 
priately, the total number of objects in order to find h. This 
prediction was made because Superficial Label participants 
were expected to be more likely than Abstract Label 
participants to associate objects with finding a total and the 
No Label participants would simply be attempting to repeat 
the steps from the examples. 
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Table 6 
Additional Sample Test Problems (Experiments 3 and 4) 

Weighted average with humans providing total frequency 

The manager of a large taxicab company took a survey of some of the cab drivels and found that 
each driver had one or two specific cabs that they preferred to drive when possible. The manager 
found that, of the 29 drivels surveyed, 7 of them had managed to drive a single cab each time 
they worked, whereas 12 of the drivers had driven 2 different cabs and 10 of the drivers had 
driven 3 different cabs. The manager also examined some of the cabs and found that of the 29 
cabs examined, 4 of them had been driven by only 1 driver, 9 of the cabs had been driven by 2 
different drivers, 5 of the cabs had been driven by 3 different drivels, and 11 of the cabs had 
been driven by 4 different drivers. Use the Poisson distribution to determine the probability that 
a randomly chosen cab had been driven by exactly 2 different drivers. 

Solution (Not Seen by Participants) 

1(4) + 2(9) + 3(5) + 4(11) 81 
E(X) . . . .  2.79 = average number of drivers per cab 

29 29 

[(2.718-2.79)(2.792)] (.061)(7.78) 
P(X = 2) = = = .237 

2! 2 

Total frequency given directly with humans providing total frequency 

Over a period of time at a certain video store, 243 people rented 104 different videos. Use the 
Poisson distribution to determine the probability that a randomly chosen video was rented 
exactly four times. 

Solution (Not Seen by Participants) 

243 
E(X) = = 2.34 = k = average number of renters per video 

104 

[(2.718-2.34)(2.344)] (.096)(29.98) 
P(X = 4) = = = .12 

4! 24 

Total frequency calculated by adding simple frequencies of humans 

An accounting firm employing many accountants worked on a large number of tax returns and 
used many types of tax forms. Four of the accountants were interviewed, and it was found that 1 
worked on three types of tax forms that day, another worked on nine, a third worked on five, and 
the 4th worked on six. In addition, of the many different types of tax forms used, it was found 
that one type of tax form was used by 12 accountants at the finn, another type was used by 8 
accountants, a third type was used by 6 accountants, and a fourth type was used by 9 accoun- 
tants. Use the Poisson distribution to determine the probability of a randomly chosen type of tax 
form being worked on by 7 different accountants. 

Solution (Not Seen by Participants) 

1 2 + 8 + 6 + 9  35 
E(X) = 

4 4 
= 8.75 = h = average number of accountants per form 

[(2.718-s.75)(8.757)] (.00016)(3926960) 
P(X = 7) = = = .125 

7 ! 5040 

367 

The role reversal described previously was also expected 
to affect performance on the transfer problems that involve a 
change in steps. Predicted performance on the novel prob- 
lems varied as a function of  group and role correspondence. 
Four of  the novel problems provided the total frequency 
directly. Two of  the these problems involved objects provid- 
ing the total event frequency (such as the second problem in 
Table 2), whereas the other two involved humans providing 

the total event frequency (see the second problem in Table 6 
for an instance of  the latter type). It was predicted that on the 
first pair of  problems both label groups would outperform 
the No Label  group. It was predicted that on the second pair  
of  problems Superficial Label  participants would be more 
l ikely than Abstract  Label  participants to incorrectly place 
the number of  objects in the numerator of  the fraction in 
order to find h. This prediction was made because of  the 
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hypothesis that Superficial Label participants would be more 
likely than Abstract Label participants to associate objects 
with finding a total. The value placed in the numerator of  the 
fraction presumably represents the value that the participant 
believes is the total. 

The last four problems involved adding simple frequen- 
cies in order to find a total frequency. Two of  the problems 
involved objects being used to calculate the total event 
frequency (such as the first problem in Table 2) and two 
involved humans being used to calculate the total event 
frequency (see the third problem in Table 6 for an example 
of  the latter type). It was predicted that on the first pair of  
problems the label groups would outperform the No Label 
group. The second pair of  problems provided two sets of  
numbers. The first set of  numbers could be added to produce 
a total number of  objects and the second set could be added 
to produce a total number of  people. If  only one set was 
provided, then participants would be more procedurally 
constrained and there would be less of  a chance of  finding a 
performance difference between Superficial and Abstract 
Label participants. It was predicted that on the second pair of  
problems the Superficial Label participants would be more 
likely than Abstract Label participants to make the mistake 
of  calculating a total using objects rather than humans. 

Thus, for reversed correspondence (relative to the ex- 
amples) novel test problems, as well as the reversed 
correspondence isomorphs, it was predicted that Abstract 
Label participants would show less of  a decrement in 
performance than Superficial Label participants, relative to 
the groups' performance on the same correspondence prob- 
lems. No Label participants were expected to do poorly on 
all novel test problems although performance was predicted 
to be worse on the problems featuring reversed role corre- 
spondence unless there was a floor effect. 

M e ~ o d  

Participants. Participants were 90 students recruited from an 
introductory psychology class at the Georgia Institute of Technol- 
ogy who received course credit for their participation. None of the 
participants had taken a probability course prior to participating in 
the experiment, but all had at least one college-level calculus 
course and therefore could be considered to have a "stronger" 
math background. 

Materials and procedure. Participants studied the same cover 
sheet as in Experiment 1. 

Participants were randomly assigned to one of three groups (n = 
30 per group). The Superficial Label, Abstract Label, and No Label 
groups studied the same three examples as the corresponding 
groups in Experiments 1 and 2. 

After studying the examples, participants solved 12 test prob- 
lems. The first four test problems were isomorphic to the training 
examples, that is, they required the weighted average method for 
finding k. The first two involved objects in the total frequency and 
the next two involved humans in the total frequency (see the first 
problem Table 6 for an example of the latter set). The next four test 
problems involved the total frequency being given directly in the 
problem; the average could be found by simply dividing the given 
total frequency by the total number of trials. The first pair of the set 
involved objects in the total frequency (see the second problem in 
Table 2 for an example), whereas the second pair involved humans 

in the total frequency (see the second problem in Table 6 for an 
example). The next four test problems involved calculating the 
total frequency by adding a set of simple frequencies. The first pair 
of the set involved objects in the total frequency (see the first 
problem in Table 2 for an example) whereas the second pair 
involved humans in the total frequency (see the third problem in 
Table 6 for an example). Participants were told not to look back at 
the examples when solving the test problems. 

Participants' written solutions were scored for whether they 
found h correctly. 

Design. The between-subjects variable was type of example 
solutions studied (Superficial Label, Abstract Label, No Label). 
The within-subjects variable was correspondence of the roles of 
humans and objects in the test problems to their roles in the 
examples. The dependent measure was performance on the 12 test 
problems. 

Results and Discussion 

As in Experiments 1 and 2, participants were given a 
score of  i for a given problem if they found h correctly and a 
score of  0 otherwise. The scores for Problems 1 and 2, the 
two problems that were isomorphic to the training examples 
and had the same role correspondence of  humans and 
objects as the examples, were summed, creating a score 
from 0 to 2 for performance on those problems. Similarly, a 
score from 0 to 2 was calculated for the isomorphs that had a 
reversed role correspondence of  humans and objects (Prob- 
lems 3 and 4). Finally, a score from 0 to 4 was calculated for 
the novel test problems with the same role correspondence 
as the examples (Problems 5, 6, 9, and 10) and a score from 
0 to 4 was calculated for the novel test problems with a 
reversed role correspondence (Problems 7, 8, 11, and 12). 

As expected, all groups did quite well at finding h on test 
problems that were isomorphs to the training examples and 
had objects and humans in the same role as in the examples. 
In fact, all participants solved each of  these problems 
correctly. Performance on the isomorphs with the role 
reversals produced a different outcome. The average number 
of  problems (out of  two) solved by participants in the 
Superficial Label, Abstract Label, and No Label conditions 
was 0.80, 1.33, and 0.53, respectively, which was a signifi- 
cant difference, F(2, 87) = 5.49, p = .0057, MSE = 0.91. 
Pairwise comparisons showed that the Abstract Label group 
outperformed the Superficial Label group and the No Label 
group (both ps < .04), whereas the latter two groups did not 
differ (p > .28). 

Table 7 presents the groups' performance on the novel test 
problems as a function of  whether the problems involved the 
same or reversed role correspondence of  humans and objects 
compared to the training examples. An analysis of  variance 
was carried out on the performance on the novel test 
problems with group as the between-subjects variable and 
role correspondence (same as examples vs. reversed from 
the examples) as the within-subject variable. 

There was a significant difference among the three groups 
with respect to finding h on the novel test problems, 
F(2, 87) = 6.21, p = .003, MSE = 5.70. There was also an 
effect of  role correspondence indicating that problems with 
reversed role correspondence were solved less successfully 
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Table 7 
Number of  Novel Test Problems Solved Correctly 
as a Function of  Label and Role 
Correspondence (Experiment 3) 

Group 

Superficial Abstract No 
Correspondence label label label M 

Same 3.07 3.00 1.53 2.53 
Reversed 1.67 2.67 1.13 1.82 

M 2.37 2.83 1.33 2.18 

Note. N = 30 for each cell. Maximum possible score for any 
cell = 4. 

than those with the same role correspondence as the 
examples, F(1, 87) = 26.56, p < .0001, MSE = 0.86. 
Finally, there was a significant interaction between group 
and role correspondence, F(2, 87) = 6.25, p = .003, MSE = 
0.86, suggesting that the correspondence manipulation af- 
fected the groups differently. 

Separate analyses were carded out for each group compar- 
ing performance on same and reversed role correspondence 
problems. The Superficial Label group showed a significant 
decrease in performance on the reversed role correspon- 
dence problems compared to the same role correspondence 
problems, F(1, 29) = 19.12, p = .0001, MSE = 1.54, 
whereas the Abstract Label and No Label groups did not 
show significant differences in performance on the problem 
types. 

Consistent with the previous analysis, if performance on 
only the reversed role correspondence problems is consid- 
ered, a significant effect of group is found, F(2, 87) = 5.33, 
p = .007, MSE = 3.41, with pairwise comparisons indicat- 
ing that the Abstract Label group outperformed the other 
groups (both ps < .04) but the Superficial Label group did 
not outperform the No Label group (p > .26). Conversely, if 
performance on only the same role correspondence prob- 
lems is considered, a significant effect of group is again 
found, F(2, 87) = 7.17, p = .001, MSE = 3.14, but now the 
pairwise comparisons indicate that the two label groups 
outperformed the No Label group (bothps < .002), whereas 
there was no difference between the two label groups 
(p > .88). 

It was predicted that a typical mistake made by the 
Superficial Label participants in solving the novel reversed 
role correspondence problems would be to put or calculate a 
value for total number of objects in the numerator. One way 
of examining the likelihood of making this mistake is to 
examine performance on reversed role correspondence prob- 
lems by Superficial Label participants who solved the same 
role correspondence problems correctly. This approach 
would therefore consider only participants who demon- 
strated the ability to transfer to problems that involved a 
change in procedure relative to the training examples. As a 
result, mistakes on the reversed role correspondence prob- 
lems would presumably be due to confusion about roles 
rather than difficulty adapting steps. 

Of the eight Superficial Label participants who found h 

correctly in all four novel same role correspondence prob- 
lems, five of them put objects in the numerator for finding h 
in at least three of the reversed role correspondence prob- 
lems. Conversely, of, the seven Abstract Label participants 
who found k correctly in all four same role correspondence 
problems, only two of them put objects in the numerator for 
finding k in at least three of the reversed role correspondence 
problems. Although these numbers are too small to achieve 
statistical significance, their pattern is consistent with the 
interpretation that the Superficial Label participants who 
were able to adapt the solution procedure from the examples 
were more likely to be misled by surface features compared 
to the analogous Abstract Label participants. 

Experiment 3 suggests that the subgoal formed in re- 
sponse to a label may be less closely tied to surface details of 
examples when the label does not reference those details. 
Learners receiving examples using abstract labels trans- 
ferred more successfully than other learners to novel prob- 
lems that altered, with respect to the examples, the correspon- 
dence between surface features and the solution procedure. 
This result suggests that the generality of the procedure 
formed from examples can be increased through the use of 
labels that do not contain references to surface features of 
examples, at least for learners with appropriate background 
knowledge. 

Experiment  4 

One concern from the prior experiments is whether any 
generalizations formed by learners were actually due to 
learners' attempts to use the examples to solve the first test 
problem rather than----or in addition to--being due to 
generalizations caused by features (i.e., labels) of the 
examples themselves. Such a concern is motivated by the 
findings of Ross and Kennedy (1990). In a typical experi- 
ment they had learners study four probability principles 
(e.g., permutations, combinations) that were each illustrated 
through a worked example. After studying the principles and 
examples learners attempted to solve eight problems, two 
for each principle. The first test problem for each principle 
either did or did not contain a cue indicating which prior 
training example was relevant for solving the problem. The 
second test problem for each principle never contained a 
cue. 

Ross and Kennedy (1990) found that when learners 
received a cue on the first test problem for a particular 
principle, they were more likely to solve the second test 
problem for that principle compared to cases in which the 
first test problem was uncued. More specifically, this benefit 
manifested itself in terms of an increased likelihood in using 
the correct principle for the second test problem as well as 
instantiating the variables correctly. The improved instantia- 
tion Of variables on the second test problem for each 
principle was seen in cases in which the roles played by 
humans and objects in the example were reversed in the first 
and second test problems relative to the example. 

For instance, if the example involved humans picking 
objects (e.g., scientists choosing computers), the problems 
would involve objects "picking" humans (e.g., as a particu- 
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lar computer is unpacked, a randomly chosen scientist is 
assigned to use i0. Learners who were cued to the relevant 
example when working on the first test problem for a 
particular principle were more likely to get the roles for 
humans and objects correct when working on the second test 
problem for that principle (there was no difference between 
cued and uncued performance on thefirst test problem with 
respect to getting the roles correct). Ross and Kennedy 
(1990) argued that differences between the problem and the 
cued example led learners to form a generalization as they 
attempted to apply the example to the problem. This 
generalization affected performance on the second test 
problem. 

In order to investigate the previous possibility with 
respect to the materials and procedures used in the present 
study, the roles of humans and objects in the first two test 
problems were either the same or reversed from their roles in 
the training examples in Experiment 4. If the purported 
subgoal learning effect--as demonstrated by how well 
learners couM handle procedure modification and role 
reversal--observed across the first three experiments was 
primarily a function of the labels in the training examples, 
then performance should be largely a function of type of 
labels regardless of the roles in the initial test problems. If, 
however, generalization is substantially affected by the 
application of an example to the first test problem, then if the 
roles in the first test problem are reversed from the ex- 
amples, this might lead learners to form a generalization (at 
least about roles) that will help subsequent performance on 
other test problems with role reversals. If  the roles in the first 
test problem are the same as in the examples, then learners 
might be more likely to form a mental set concerning roles 
and therefore be less likely to handle role reversals success- 
fully in subsequent problems. 

A second concern addressed in Experiment 4 was that the 
first three experiments provided only indirect support for the 
claim that a cue such as a label prompts learners to 
self-explain the purpose of a set of steps. More direct 
evidence for this claim might be provided by having learners 
talk aloud while studying the training examples in order to 
test whether they are in fact spontaneously attempting to 
explain the purpose of groups of steps. A prior study 
(Catrambone, 1996) used a talk aloud approach during the 
training phase and found support for the self-explanation 
process. However, it would be useful to replicate this 
finding. In addition, the prior study did not manipulate the 
role correspondences. Thus, the talk aloud protocols in the 
present study might shed some light as to whether learners 
explicitly generalize over the roles played by humans and 
objects as well as form subgoals while studying examples. 

In the present experiment learners were asked to explain 
the solutions to the examples they studied. It was predicted 
that participants studying examples that labeled the steps for 
finding the total frequency would be more likely than No 
Label participants to make a statement about certain steps 
being a unit and would also be more likely to offer an 
explanation for what the steps accomplished. Participants 
were also asked to explain aloud how they were approaching 
the first four test problems in order to examine whether they 

explicitly note the role reversals. If  a learner is less likely to 
form a mental set concerning roles when the initial test 
problem has humans and objects playing different roles from 
those in the examples, then participants should be more 
likely to note the role reversal if it occurs on the initial test 
problem that if it does not occur until the third test problem. 
Such an observation by the learner should also be associated 
with an increased likelihood of getting the role assignments 
correct on the reversed role correspondence problems. 

The No Label, Superficial Label, and Abstract Label 
groups' studied the same examples and solved the same 
problems as their counterparts in Experiment 3. 

Method 

Participants. Participants were 180 students recruited from an 
introductory psychology class at the Georgia Institute of Technol- 
ogy who received course credit for their participation. None of the 
students had taken a probability course prior to participating in the 
experiment, but all had at least one college-level calculus course. 

Materials and procedure. Participants studied the same cover 
sheet as in the prior experiments and then studied three examples 
that used either the Superficial Label, Abstract Label, or No Label 
solution. 

Participants were tested individually. After studying the cover 
sheet, participants were given a brief description of the process of 
talking aloud and then played the experimenter in a game of 
tic-tac-toe. Participants were asked to "describe what is going 
through your mind and what your strategy is each time you write an 
'X.' "After this warm-up task, participants were given the three 
examples. They were told that they would be asked to solve 
problems after they studied the examples and therefore they should 
make sure they understood the examples well enough to solve 
similar and novel problems. They were asked to talk aloud in order 
to show the experimenter what they were doing to understand the 
solutions to the examples. If a participant was silent for 7 s 5 while 
studying, he or she was prompted to "please say out loud what is 
going through your mind." After they finished the first example, 
participants were no longer prompted because the examples were 
isomorphic and continual prompting could have made participants 
feel that they were being asked to repeat themselves arbitrarily. 
After studying the examples, participants solved the same 12 test 
problems used in Experiment 3. Participants were asked to talk 
aloud while working on the first four problems. 

Participants solved the test problems in one of two orders. In the 
same-roles-first order, the order of the problems was the same as in 
Experiment 3. In particular, the first two problems were isomorphic 
to the examples and humans and objects played the same roles as in 
the examples, whereas the next two problems were isomorphs with 
reversed roles. In the reversed-roles-first order, the first two 
problems were isomorphic to the examples but had humans and 
objects playing reversed roles relative to the roles they played in 
the examples (see the first problem in Table 6 for a sample 
problem), whereas the next two isomorphs had humans and objects 
playing the same roles as in the examples. The remaining eight 
problems were in the same order for both conditions and matched 
the order used in Experiment 3. The reason for this is that the 
generalizations that Ross and Kennedy's (1990) participants pro- 
duced were presumably caused by applying an example to a single 
problem, thus in the present experiment the role generalization, if 

5 This value was chosen after pilot testing and does not have any 
particular theoretical motivation. 
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affected by problem order, should occur before participants would 
have reached the nonisomorphic problems. 

Participants' written solutions were scored for whether they 
found the average correctly. The talk aloud protocols produced 
during the training phase and during the first four test problems 
were tape recorded and transcribed. The transcriptions were 
annotated to indicate gestures by the participants such as when they 
pointed to a particular part of an example while talking aloud. Two 
raters independently coded the talk aloud protocols while one rater 
scored the solutions to the test problems. The raters agreed on 
coding 91% of the time (see the following discussion of the coding 
system). Disagreements were resolved by discussion. 

Design. The independent variables were type of example 
solution studied (Superficial Label, Abstract Label, No Label) and 
order of the first four test problems (same-roles-first vs. reversed- 
roles-first), thus there were six groups in the experiment. There 
were 30 participants per condition, thus requiring 180 participants. 
The dependent measures were the presence of certain elements in 
the talk aloud protocols (see below) and performance on the 12 test 
problems. 

Results and Discussion 

Because of  the large number of  participants, the coding of  
the protocols so far has been limited to an examination of  the 
presence of  a small set of  features. Specifically, the self- 
explanation features that were coded from the training phase 
were: (a) whether or not a participant made an observation 
about the steps for finding the total frequency being a group 
(he or she did not have to mention the fact that the steps 
calculated a total), and (b) whether a participant mentioned 
that those steps were in fact calculating a total. Participants' 
self-explanations were combined across the three examples. 
That is, if a participant mentioned either of  the previous 
features for any of  the examples, then he or she was scored 
as having mentioned the feature. The feature coded from the 
talk aloud protocols while participants worked on the first 
four test problems was whether or not a participant com- 
mented that the roles of  humans and objects were different in 
either of  the reversed role correspondence problems com- 
pared to the examples. 

Self-explanations and role-reversal observations. There 
was a significant difference among the three label conditions 
in the frequency with which they observed that the steps for 
finding total frequency were a group, ×2(2, N = 180) = 
17.51, p = .0002, with percentages of  57%, 52%, and 22% 
for the Superficial Label, Abstract Label, and No Label 
groups, respectively (the additional division of  participants 
as a function of  order of  test problems is not relevant here 
because these self-explanations were generated during the 
study phase). Both label conditions mentioned the grouping 
more often than the No Label condition (vs. Abstract Label: 
×z(1, N = 120) = 11.63, p = .0007; vs. Superficial Label: 
X2(1, N = 120) = 15.42, p = .0001), whereas there was no 
significant difference between the two label conditions; X2(1, 
N = 120) = 0.30,p = .58. 

There was a significant difference among the three 
conditions in the frequency with which they mentioned that 
the steps calculated a total, ×2(2, N = 180) = 14.33, p = 
.0008, with percentages of  43%, 38%, and 13% for the 
Superficial Label, Abstract Label, and No Label conditions, 

respectively. Both label groups mentioned that the steps 
calculated a total more often than the No Label group (vs. 
Abstract Label: ×2(1, N = 120) = 9.79, p = .002; vs. 
Superficial Label: ×2(1, N = 120) = 13.30, p = .0003), 
whereas there was no significant difference between the two 
label groups; ×2(1, N = 120) = 0.31, p = .58. These relative 
differences among the conditions are very similar to those 
found in Catrambone (1996). 

Neither training condition or the order of  the test prob- 
lems had an effect on the likelihood of  participants mention- 
ing anything about the roles of  humans and objects in the 
first four test problems. Thirty percent of  the participants in 
each of  the two label conditions mentioned that the roles 
were reversed in at least one of  the reversed role correspon- 
dence problems, whereas 23% of the No Label participants 
made that observation, ×2(2, N = 180) = 0 .64,p  = .89. For 
both the reversed-roles-first condition and the same-roles- 
first condition, 28% of the participants mentioned the role 
reversal. 

Transfer. The test problems were scored exactly as in 
Experiment 3. Table 8 presents the results for the various 
problem types. 

As in Experiment 3, all groups did quite well at finding h 
on test problems that were isomorphs to the training 
examples and had objects and humans in the same role as in 
the examples (these were the first pair of  problems for 
participants in the same-roles-first condition and the second 
pair of  problems for participants in the reversed-roles-first 
condition). Performance on the isomorphs with the role 
reversals was not as good (see Table 8). 

An analysis of  variance was carried out on the perfor- 
mance on the isomorphic test problems with label and test 
order as the between-subjects variables and role correspon- 
dence (same as examples vs. reversed from the examples) as 
the within-subject variable. There were no significant effects 
due to label, F(2, 174) = 1.54, p = .22, MSE = 0.74, 
problem order, F(1, 174) = 0.18, p = .67, or their 
interaction, F(2, 174) = 0.01, p = .99. There were signifi- 
cant effects due to role correspondence, F(1,174)  = 131.89, 
p < .0001, MSE = 0.44, and the interaction of  role 
correspondence and label, F(2, 174) = 4.54, p = .012. No 
other interaction was significant. The lack of  an effect of  test 
order, or an interaction between test order and role correspon- 
dence, suggests that, at least for isomorphs, test order did not 
appear to play a role on whether learners induced a mental 
set concerning roles. 

Although all groups did well on the same role correspon- 
dence problem isomorphs, the interaction between label and 
role correspondence indicates that the Abstract Label group 
had less difficulty solving reversed role correspondence 
isomorphs relative to the other conditions. Pairwise compari- 
sons on the reversed role correspondence isomorphs showed 
that the Abstract Label group outperformed the No Label 
group (p < .02) and marginally outperformed the Superfi- 
cial Label group (p < .06), whereas the Superficial and No 
Label groups did not differ (p > .57). 

An analysis of  variance was carded out on the perfor- 
mance on the novel test problems with label and problem 
order as the between-subjects variable and role correspon- 



372 CATRAMBONE 

Table 8 
Number of  Test Problems Solved Correctly as a Function of Label, Problem Order, 
and Role Correspondence (Experiment 4) 

Group 

Superficial label Abstract label No label 

Problem type/ Same Reversed Same Reversed Same Reversed 
correspondence roles first roles first roles first roles first roles first roles first M 

Isomorphic 
Same 1.90 1.83 1.87 1.80 1.90 1.90 1.87 
Reversed 1.00 0.97 1.33 1.30 0.90 0.87 1.06 

M 1.45 1.40 1.60 1.55 1.40 1.38 1.46 
Novel 

Same 2.90 2.83 2.73 2.70 1.90 1.83 2.48 
Reversed 1.76 1.73 2.37 2.33 1.23 1.27 1.78 

M 2.38 2.33 2.55 2.52 1.52 1.50 2.13 

Note. N = 30 for each cell. Maximum possible score for any cell for isomorphic problems = 2. 
Maximum possible score for any cell for novel problems = 4. 

dence as the within-subject variable. There was a significant 
difference due to label with respect to finding k on the novel 
test problems (see Table 8), F(1, 174) = 5.02, p = .008, 
MSE = 6.23. There was no effect due to problem order of the 
four initial isomorphs, F(1,174) = 0.02, p = .90. There was 
an effect of role correspondence indicating that problems 
with reversed role correspondences were solved less success- 
fully than those with the same role correspondence as the 
examples, /7(1, 174) = 46.77, p < .0001, MSE = 0.94. 
Finally, there was a significant interaction between label and 
role correspondence, F(2, 174) = 4.64, p = .01, suggesting 
that the correspondence manipulation affected the groups 
differently. No other interactions were significant. Once 
again, the lack of an effect of test order, or an interaction 
between test order and role correspondence, suggests that 
learners who had solved same role correspondence isomor- 
phic test items first were no more likely to form a mental set 
than other participants. 

Collapsing across problem order, pairwise comparisons 
among the three label conditions on the same role correspon- 
dence novel problems shows that both label groups outper- 
formed the No Label group (bothps < .02), whereas the two 
label groups did not differ (p > .65). Pairwise comparisons 
among the three label conditions on the reversed role 
correspondence novel problems showed that the Abstract 
Label group outperformed the No Label group (p = .002) 
and showed a marginally significant advantage over the 
Superficial Label group (p < .085; although p < .043 for a 
one-tailed test which would be appropriate here because a 
directional difference was predicted), whereas the Superfi- 
cial Label and No Label groups did not differ (p > .14). 

Although participants in the Abstract Label group seemed 
to have a more general representation for the solution 
procedure compared to the other groups, even Abstract 
Label participants still had trouble adapting the procedure to 
problems with reversed role correspondences. That is, both 
label groups appeared to be conservative in their induction 
of the subgoals (i.e., the subgoals still tended to have some 
ties to superficial features). Still, the Abstract Label group 

was better able to adapt their procedures on reversed role 
correspondence problems compared to the Superficial Label 
group. 

Transfer as a function of self-explanations. Because the 
label groups showed better transfer than the No Label group, 
the relationship between self-explanations and transfer was 
analyzed using only label participants. Participants who 
mentioned that the steps for finding the total frequency were 
a group performed better on the novel test problems than 
those who did not make that observation (see Table 9), F(1, 
118) = 14.03, p = .0003, MSE = 5.42. There was also an 
effect of role reversal, F(1, 118) = 33.46, p < .0001, MSE = 
0.86, as well as an interaction between these two factors, 
F(1, 118) = 22.32, p < .0001. Interestingly, this interaction 
seems to have been driven primarily by the large drop in 
performance from same role to reversed role correspondence 
problems by participants who mentioned the grouping. 
Nevertheless, the performance on the reversed role correspon- 
dence problems by those who mentioned the grouping was 
still better than the performance on the same role correspon- 
dence problems by those who did not mention the grouping. 

Similar results were found with respect to the relationship 
between mentioning a total and transfer. Participants who 
mentioned that the steps found a total performed better on 
the novel test problems than those who did not make that 
observation (see Table 9), F(1, 118) = 18.96, p < .0001, 
MSE = 5.22. There was also an effect of  role reversal, F(1, 
118) = 47.84, p < .0001, MSE = 0.87, as well as an 
interaction between these two factors, F(1, 118) = 21.26, 
p < .0001. 

Transfer as a function of comments made when solving 
the first four test problems. As with the previous analyses, 
the relationship between transfer and comments about role 
reversals was analyzed using only label participants. Partici- 
pants were scored for whether or not they made an explicit 
comment about the roles of humans and objects being 
different than they were in the examples for any of the 
reversed role correspondence isomorphs. 

Participants who commented on the role reversal did not 
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Table 9 
Number of Novel Test Problems Solved Correctly as a 
Function of Self-Explanations, Observations of Role 
Reversals, and Role Correspondence (Experiment 4) 

Role Response 
correspondence Yes No 

Mentioned that steps formed a group 

(n = 65) (n = 55) 

Same 3.57 1.87 
Reversed 2.31 1.75 

Mentioned that steps calculated a total 

(n = 49) (n = 71) 

Same 3.90 2.03 
Reversed 2.49 1.75 

Cornment~ on role reversal 

(n = 36) (n = 84) 

Same 2.97 2.71 
Reversed 2.03 2.06 

Note. Maximum possible score for any cell = 4. 

perform significantly differently on the novel test problems 
compared to those who did not make that observation (see 
Table 9), F(1,118) = 0.11,p = .74, MSE = 6.05. There was 
an effect of role reversal, F(1, 118) = 31.84, p < .0001, 
MSE = 1.01. Of most interest is the interaction between role 
reversal and observation because such an interaction would 
suggest that those who commented on the role reversal 
would be less likely to be misled by it when solving the 
novel test problems. No interaction was found between these 
two factors, F(1,118) = 1.04,p = .31. 

Given the predictive association between the other self- 
explanation features and transfer, it is odd that no such 
relationship is found here. One possible explanation for a 
lack of relationship in this case might be that learners are 
more likely to explicitly talk aloud about procedural features 
of solution procedures than they are to talk about changes in 
roles. As a result, a number of the participants categorized as 
"no" in Table 9 might have noticed the role reversal but 
simply did not comment on it. Consistent with this possibil- 
ity, Novick and Holyoak (1991) found that learners were 
more likely to talk about procedural correspondences be- 
tween examples and problems (e.g., how numbers from an 
example line up with numbers from a problem) compared to 
conceptual correspondences (e.g., whether humans or ob- 
jects provide the pool of choices). Another possibility is that 
although one might note the roles, it could be relatively 
difficult to adapt this knowledge (Ross, 1987, 1989). 

The talk aloud results from Experiment 4 provide more 
direct evidence that a label can lead a learner to group a set 
of steps and to attempt to determine the goal or function of 
those steps through a self-explanation process. This self- 
explanation process also seems to help a learner to form a 
solution approach that is less likely to contain surface 
features in the representation, thus reducing the likelihood of 

these learners being misled on problems that involve changes 
in surface features. 

Still, even learners who mentioned the idea of finding a 
total or reported noticing role reversals had trouble on 
reversed role correspondence problems. This suggests a 
relatively conservative induction; that is, even though some 
participants did mention finding a total in their protocols, 
their conception of a total still may have been linked to 
objects. This would be on top of difficulties that they still 
may have had adapting the solution steps (Novick & 
Holyoak, 1991). The superior performance by the Abstract 
Label participants on the reversed role correspondence 
problems suggests that they may have been at least a bit less 
conservative in their induction than other participants. 
Conversely, Superficial Label participants may have been 
too conservative and thus, when working on reversed role 
problems, had difficulties because of their conservatism 
concerning roles in addition to difficulties adapting the 
solution steps. 

The results also suggest that the nature of the initial test 
problems does not necessarily affect solution generalization. 
This result would seem to contradict the findings of Ross and 
Kennedy (1990) who reported that learners were more likely 
to form an appropriate generalization if they were cued to 
apply the relevant example to a test problem compared to 
learners who were not cued. However, there are two 
differences between Experiment 4 and the experiments 
conducted by Ross and Kennedy that may account for the 
conflicting results. First, participants in Experiment 4 stud- 
ied three examples, whereas Ross and Kennedy's partici- 
pants studied one per principle. The greater number of 
examples in the present study could have aided generaliza- 
tion prior to learners working on the first test problem 
(although a pilot study has shown a benefit of a label with 
just one example). Second, the examples studied in the two 
label conditions were designed to teach subgoals to learners; 
this was not the case with Ross and Kennedy's materials. It 
could be that when a person learns subgoals from examples 
for solving a problem, any additional generalizations that 
might occur because of applying the example to an initial 
test problem are obscured or are relatively minor. 6 Clearly 
this issue needs to be examined systematically. 7 

The superior transfer to novel problems by the label 

6 A third difference between the studies is that problems in the 
present study never included cues to prior examples. However, this 
is not an issue because the examples studied were isomorphs (i.e., 
they involved the exact same solution steps) to one another and 
therefore there was no one example that was better than the others 
for a learner to recall when he or she worked on the test problems. 

7 For instance, it may be the case that although the subgoal 
structure is learned through examples, modifications or generaliza- 
tions to the methods for achieving those subgoals are made 
primarily on an as-needed basis such as when the learner is 
confronted with a novel problem. Such a possibility could be 
explored through experiments in which learners are asked to 
describe their problem-solving procedures after studying (labeled 
or unlabeled) examples versus after studying examples and solving 
some problems that either do or do not require modifications to 
previously learned steps. 
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groups, as well as the superior transfer by those participants 
who appeared to form the subgoal to find the tot~---as 
assessed through the talk aloud protocols--is consistent 
with the interpretation that subgoal learning helps a person 
to solve novel problems that involve the same subgoals but 
require a change in the steps for achieving them. The smaller 
effect on role reversals suggests that this type of adaptation 
is qualitatively different than adaptations to solution steps 
and may respond better to other sorts of instructional 
interventions. 

General  Discussion 

Learners frequently have difficulty solving problems that 
involve more than trivial changes to the steps demonstrated 
in training examples. This appears to occur because learners 
focus on memorizing steps rather than understanding what 
groups of steps accomplish. The present study was based on 
the assumption that transfer can be improved if learners 
form a solution procedure that is structured by subgoals and 
a method for achieving each subgoal rather than just a single 
linear set of steps for the entire procedure. Learners seem to 
be more likely to form such a structured solution procedure 
if they receive cues--such as labels--in example solutions 
that suggest that a set of steps form a group. If a learner 
notices the grouping then he or she seems to be more likely 
to attempt to explain to himself or herself the purpose of the 
steps and thus, to form a subgoal representing that purpose. 
The experiments in this study provide converging evidence 
for the subgoal-leaming model and the benefits of subgoal 
learning on transfer. 

Learners with a stronger math background are more likely 
to form an appropriate subgoal from a label cue compared to 
learners with a weaker background. Learners with a weaker 
background appear to rely more heavily on the semantic 
content of the label in order to form a subgoal. Unfortu- 
nately, a label that is related to surface features of a problem 
will be more likely to lead a learner to form a solution 
procedure that is tied to those features. An abstract label is 
less likely to lead a learner to make this mistake, although 
the learner must have relevant background knowledge in 
order to take advantage of an abstract label. These results 
suggest that cues such as labels can play a strong role in the 
formation of solution procedures. Because of this, care must 
be taken to construct cues in a way to aid the formation of 
structured solution procedures. For learners with weaker 
backgrounds these cues might need to be tied at least 
partially to example features despite the danger that this may 
lead the learner to form representations that have erroneous 
surface ties. However, for learners with stronger back- 
grounds, the cues can be constructed more abstractly, thus 
helping them to form appropriate subgoals. 

Experiments 3 and 4 provide evidence that subgoals, 
particularly when formed from cues that do not lead to 
misleading connections to surface features of problems, can 
also help learners deal with changes in problems involving 
the mapping of entities in the problems to their mathematical 
roles. In addition, the subgoal learning that occurs during 
training appears to make additional generalizations during 

an initial problem-solving episode less likely to be needed. 
Experiment 2 suggests that the effort required to self-explain 
a set of steps connected by an abstract label produces better 
retention of a subgoal. 

Although the present set of experiments used materials 
involving the Poisson distribution, related experiments using 
algebra word problems and problems involving permuta- 
tions and combinations have produced analogous results 
(e.g., Catrambone, 1994). These studies have found that the 
use of labels and short phrases designed to encourage 
learners to group sets of steps have helped learners to be 
more successful solving novel problems. 

Subgoals, Prior Knowledge, and Procedure 
Modification 

Chi et al. (1994) argued that the chances for integrating 
new knowledge with old knowledge increase when a learner 
has the opportunity to do the integration in a "minute and 
ongoing fashion" (p. 474; emphasis the original authors'). 
That is, a learner is more likely to self-explain effectively 
and integrate or assimilate new knowledge with prior 
knowledge if the learner can perform these tasks in rela- 
tively small pieces. The use of grouping cues in solution 
procedures provides the learner with the opportunity to 
self-explain each part of the procedure, thus increasing the 
likelihood of integrating the resulting new knowledge with 
prior knowledge. 

Wattenmaker et al. (1986) suggested that the degree of 
difficulty in learning a particular category structure is at least 
partly a function of the type of knowledge that learners bring 
to the task. With respect to the present work, one could argue 
that a label leads learners to bring relevant prior knowledge 
to bear in order to self-explain the purpose of a set of steps. 
In a subsequent transfer situation, a learner possessing a 
solution procedure organized by subgoals will have an 
increased chance of accessing appropriate prior knowledge 
in order to solve a novel problem. This will occur because 
the subgoals can help constrain the search space the learner 
explores when trying to modify the old solution procedure. 

Subgoal learning may be particularly useful for some 
types of transfer but less so for others. Learners who were 
predicted to learn the subgoal to find the total frequency 
were more successful than other learners in terms of solving 
novel problems that required a change in the steps for 
finding the total. However, both types of learners still had 
difficulty when the superficial mapping of objects and 
humans was reversed, albeit the group predicted to have 
formed subgoals seemed to suffer less. This suggests that the 
various types of generalizations, modifications, and infer- 
ences needed to adapt a solution procedure to novel prob- 
lems are aided to different degrees by possibly different 
factors. For instance, perhaps the role-reversal adaptation 
would be aided by a direct statement to a learner to pay 
attention to the roles of humans and objects in the examples 
and test problems. 
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Use of  Labels Revisited 

Learners with stronger math backgrounds in Experiment 
1 who received abstract labels were more likely to form 
representations free of misleading surface features. It is 
interesting to consider though what the nature of the 
representations might be if the labels were less abstract, but 
still unconnected to surface details of the examples. For 
instance, instead of containing the label total number of 
briefcases owned, suppose an example contained the label 
total frequency of the event. This label is formally correct 
and not related to surface details of the example. Perhaps 
this sort of label would produce the best transfer because it 
would presumably serve as a grouping cue and aid self- 
explanation (relative to a more abstract label such as f~) but 
not provide a misleading tie-in to surface features. The 
effects of such a label on the representations formed by 
learners with a weaker background are unclear and worth 
investigating. It is possible that such a label would provide 
enough guidance to help weaker background learners to 
form the necessary subgoal without inappropriate surface 
ties or it may be the case that such a label remains too 
abstract to help these learners form the subgoal. 

Alternatively, given that the label would be presented in 
the context of examples, it is also possible that learners, 
regardless of background, would tend to do a conservative 
induction (cf. Medin & Ross, 1989) and instantiate or 
represent "event" as objects if the worked examples were 
like the ones used in the present experiments. Thus, an 
additional manipulation would be to vary what constitutes 
an "event" in the examples in order to see if that leads to a 
better generalization for learners. Although this approach 
might be successful for the types of problems used in the 
present research, it might not scale up. That is, given the 
large number of possible variations of surface and proce- 
dural details in potential examples and problems in various 
domains, it could take a huge number of examples to guide 
learners to the appropriate generalizations. Therefore, ma- 
nipulat ions-such as labeling--that are expected to induce 
an active self-explanation process might be the most fruitful 
and efficient approach for designing effective examples that 
lead to useful generalizations and therefore, successful 
problem solving. 
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