arrow_back Back to Tree Diagrams - conditional / without replacement

Tree Diagrams - conditional / without replacement: Probing Questions

Whether you are looking for a question to stimulate discussion in lesson, or a challenge at the end of a homework, then hopefully you will find these useful.

Contents

Convince Me That... keyboard_arrow_up
Back to Top

I use Convince Me That questions lots in my lessons and homeworks. Providing students with a statement and challenging them to come up with as many different ways of convincing you as possible can lead to some fascinating discussions. The different ways of seeing the same thing can also help improve the depth of students’ understanding. Thanks so much to the Thornleigh Maths Department, in particular Erica Richards, Anton Lewis and Gareth Fairclough for helping me put these together, and we will endeavour to keep adding more!

The totals of all the ends of the branches on a tree diagram must add up to 1

To work out the probability of two independent events happening, you multiply them together

0.6Ă—0.3=0.18

VI3 Treatment keyboard_arrow_up
Back to Top

We devised VI3 Treatment as a versatile way of giving students meaningful follow-up work at once we have marked their homework. The idea is that students are challenged to come up with 3 things with certain constraints. These are ideal to use as an extension for students who have got everything correct, and also as further purposeful practise for students who have got a particular question wrong. Use the ideas below and adapt them accordingly, using different numbers where appropriate. Either mark them yourself or better still, get other students to do it. Thanks so much to the Thornleigh Maths Department, in particular Erica Richards, Anton Lewis and Gareth Fairclough for helping me put these together, and we will endeavour to keep adding more!

Create 3 different tree diagrams where following the route of the top two branches has a probability of 12

Create 3 different tree diagrams where following the route of the top two branches gives you a probability twice as big as if you followed the route of the bottom two branches