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1. BACKGROUND 
There is evidence from earliest historical records that examples play a central role in 
both the development of mathematics as a discipline and in the teaching of 
mathematics. It is not surprising therefore that examples have found a place in many 
theories of learning mathematics. Many would argue that the use of examples is an 
integral part of the discipline of mathematics and not just an aid for teaching and 
learning. The forum takes as its background both the variety of ways in which 
examples are construed within different theories of learning and the contribution that 
attention to examples can make to the learning and teaching processes. Consequently 
the forum can be seen as addressing issues at the very heart of mathematics 
education, both drawing upon and informing many other research topics. We argue 
that paying attention to examples offers both a practically useful and an important 
theoretical perspective on the design of teaching activities, on the appreciation of 
learners’ experiences and on the professional development of mathematics teachers. 
The importance of these ideas does not actually depend on the framework used for 
analysing teachers’ intentions, nor on any terms used to describe forms of teaching, 
such as: ‘analytic-inductive’ or ‘synthetic-deductive’, ‘traditional’ or ‘reform’, ‘rote-
learning’ or ‘teaching for understanding’, ‘authentic’ or ‘investigative’. Issues in 
exemplification are relevant to all kinds of engagement with mathematics. 
This paper positions exemplification on the research agenda for the community by 
giving a historical overview of the way examples have been seen in mathematics 
education; an account of associated literature; an exploration of how exemplification 
‘fits’ with various perspectives on learning mathematics; accounts of issues relating 
to teachers’ and learners’ use of examples; and directions for future research. 

2. WHAT IS A MATHEMATICAL EXAMPLE? 
The word example is used in mathematics education in a wide variety of ways. This 
section offers a brief overview of the scope of our use of the term and points to some 
useful distinctions that can be made between different uses.  
Examples in the form of worked solutions to problems are key features in virtually 
any instructional explanation (Leinhardt 2001) and examples of all kinds are one of 
the principle devices used to illustrate and communicate concepts between teachers 
and learners (e.g. Bruner et al. 1956, Tall & Vinner 1981, Peled & Zaslavsky 1997). 



Diagrams, symbols and reasoning are all treated as particular yet thought about (by 
the teacher at least) as general. Examples offer insight into the nature of mathematics 
through their use in complex tasks to demonstrate methods, in concept development 
to indicate relationships, and in explanations and proofs. The core issue is whether 
learners and teachers are perceiving the same (or indeed any) generality. 
An important pedagogic distinction can be made between examples of a concept 
(triangles, integers divisible by 3, polynomials etc.) and examples of the application 
of a procedure (finding the area of a triangle, finding if an integer is exactly divisible 
by 3, finding the roots of a polynomial etc). Sowder (1980) tried to avoid this 
confusion by distinguishing between ‘examples’ and ‘illustrations’. However, within 
the category of ‘examples of the application of a procedure’, or ‘illustrations’ we 
distinguish further between ‘worked(-out) examples’, in which the procedure being 
applied is performed by the teacher, textbook author or programmer, often with some 
sort of explanation or commentary, and ‘exercises’, where tasks are set for the learner 
to complete. The worked-out example has been the subject of a body of research 
within psychology (e.g. Atkinson et al. 2000, Renkl 2002).  
Of course, these distinctions are neither precise nor clear cut. Gray & Tall (1994) 
underline the fact that the same notation may be viewed as signifying a process or an 
object, so that, for example, a teacher may offer a representation of the function y = 
2x + 3 as an example of a linear function, but the learner may see it as an example of 
a procedure (for drawing a graph from an equation). There is a good deal of ‘middle 
ground’ between exercises and worked examples, for instance when a teacher ‘leads’ 
a class through the working out of a typical problem using questions and prompts. 
Across these broad categories of form and function of examples there are three 
special descriptive labels: ‘generic example’, ‘counter-example’ and ‘non-example’. 
Generic examples may be examples of concepts or of procedures, or may form the 
core of a generic ‘proof’. Counter-examples need a hypothesis or assertion to counter, 
but they may do this in the context of a concept, a procedure or even (part of) an 
attempted proof. Non-examples serve to clarify boundaries and might do so equally 
for a concept, for a case where a procedure may not be applied or fails to produce the 
desired result or to demonstrate that the conditions on a theorem are ‘sharp’. In fact 
all three labels have to do with how the person (teacher or learner) perceives the 
mathematical object in question, rather than with qualities of the object itself. 
The term example here includes anything used as raw material for generalising, 
including intuiting relationships and inductive reasoning; illustrating concepts and 
principles; indicating a larger class; motivating; exposing possible variation and 
change, etc. and practising technique (Watson & Mason 2002a, 2002b). 
Exemplification is used to describe any situation in which something specific is being 
offered to represent a general class to which learners’ attention is to be drawn. A key 
feature of examples is that they are chosen from a range of possibilities (Watson & 
Mason 2005 p238) and it is vital that learners appreciate that range.  



3. EXAMPLES FROM A HISTORICAL PERSPECTIVE 

The whole point of giving worked examples is that learners appreciate them as 
generic, and even internalise them as templates so that they have general tools for 
solving classes of problems. Unfortunately their use in lessons is often reduced to the 
mere practice of sequences of actions, in contrast to a more investigative approach 
(Wallis 1682) in which learners experience the mathematisation of situations as a 
practice, and with guidance abstract and re-construct general principles themselves.  

Whereas mathematical investigations and the use of ‘authentic or ‘modelling’ 
approaches appear to be a relatively recent pedagogic strategy, there are historical 
precedents. The earliest mathematical records (Egyptian papyri, Babylonian tablets 
and later copies of lost Chinese manuscripts) all use context-based problems with 
worked solutions to illustrate procedures, or what came to be called rules and then 
later algorithms in medieval and renaissance texts. They sometimes point specifically 
to a generality with comments such as ‘thus is it done’ or ‘do it thus’ (Gillings 1972, 
p. 232), and ‘this way you may solve similar problems’ or ‘by the same method solve 
all similar problems’ (Treviso Arithmetic 1478, see Swetz 1987, p. 151).  
By the 16th century European authors of mathematical texts had begun to justify the 
presence of examples in their texts, commenting explicitly on the role that examples 
play for learners. Girolamo Cardano (1545, see  Witmer 1968) used phrases such as: 

We have used a variety of examples so that you may understand that the same can be 
done in other cases and will be able to try them out for the two rules that follow, even 
though we will there be content with only two examples; It must always be observed as a 
general rule … ; So let this be an example to you; by this is shown the modus operandi in 
questions of proportion, particularly; in such cases (Witmer 1968, pp. 36-41). 

By the late 19th and early 20th century, pedagogic principles become more and more 
explicit in some cases, if only to attract teachers to ‘new’ pedagogic approaches. For 
example a textbook from Quebec (MacVicar 1879) claims that: 

The entire drill and discussions [examples] are believed to be so arranged, and so 
thorough and complete, that by passing through them the pupil cannot fail to acquire such 
a knowledge of principles and facts, and to receive such mental discipline, as will prepare 
him properly for the study of higher mathematics. (piv) 

Some authors scramble different types of problems, or different looking problems, 
presumably to engage the learner in recognizing the type, while others collect 
exercises according to the technique needed, perhaps to promote a sense of the 
general class of which the exercises are but particulars but more probably to focus on 
fluency of performance. For example, the expansion by the schoolmaster Iohn Mellis 
(Record 1632) of John Dee’s extension of Robert Record’s original arithmetic 
(Record 1543/1969) offers collections of worked examples which offer a variety of 
differences in what is given and what is sought, so as to draw attention to a wider 
class of problem type that can be solved by the same method or ‘Rule’.  



The design of sequences of examples is a central issue in their instructional use that 
influences both the inductive and deductive aspects of learning. For example George 
Pólya (1962) provided long sequences of exercises building up generalisations from a 
simple starting idea. He ended one such a chapter with a final task: 

Devise some problems similar to, but different from, the problems proposed in this 
chapter – especially such problems as you can solve. (Pólya 1962, p. 98) 

The idea that creating your own examples and questions can aid learning is not new. 
Record has his scholar in dialogue with the author constructing examples, and 
Cardano invites the reader to construct their own examples of questions.  

Historically there have been two main approaches to the use of examples, 
distinguished in the 18th century by the terms analytic and synthetic. The difference 
amounted to whether general rules were presented before or after worked examples 
(or even not at all). In the early 19th century Warren Colburn instituted in the USA 
the inductive method advocated by Johann Pestalozzi (1801): 

The reasoning used in performing these small examples is precisely the same as that used 
upon large ones. And when anyone finds a difficulty in solving a question, he will remove it 
much sooner and much more effectively, by taking a very small example of the same kind, 
and observing how he does it, than by [resorting] to a rule. (Colburn 1826, pp. 141-142) 

Herbert Spencer (1878), developed the ideas further, expecting learners to infer the 
general from carefully presented particulars  

Along with rote-teaching, is declining also the nearly-allied teaching by rules. The 
particulars first, and then the generalizations, is the new method … which, though ‘the 
reverse of the method usually followed, which consists in giving the pupil the rule first’ is 
yet proved by experience to be the right one. Rule-teaching is now condemned as imparting 
a merely empirical knowledge – as producing an appearance of understanding without the 
reality. To give the net product of inquiry without the inquiry that leads to it, is found to be 
both enervating and inefficient. General truths to be of due and permanent use, must be 
earned. … While the rule-taught youth is at sea when beyond his rules, the youth instructed 
in principles solves a new case as readily as an old one. (Spencer 1878, pp. 56–57) 

Alfred Whitehead  summarised this approach as  
To see what is general in what is particular and what is permanent in what is transitory is 
the aim of scientific thought. (Whitehead 1911, p. 4) 

Pólya asserted: 
 [in doing mathematics]… we need to adopt the inductive attitude [which] requires a 
ready ascent from observations to generalizations, and a ready descent from the highest 
generalizations to the most concrete observations. (Pólya 1945, p. 7). 

Even more important than the distinction between inductive and deductive, between 
‘general first’ or ‘general later’, are finer distinctions and hybrid approaches which 
will emerge in later sections. Both inductive and deductive approaches are 
compatible with constructive accounts of learning and rely on exemplification: 
inductive learning implies that the learner is making some generalisations about 



actions or concepts while working with a range of examples (seeing generality 
through particulars); deductive learning implies that the learner is able to make 
personal sense of a definition or general principle, and adapt it for current and future 
use (seeing particular instances in the general).  
Examples can be useful stimuli for prompting self-explanation leading to 
understanding. Cardano acknowledges that sometimes it is too confusing to state a 
general method, and suggests that examples provide explanation. This sentiment is 
reflected in a wide range of text authors over the centuries, and by Richard Feynman: 

I can’t understand anything in general unless I’m carrying along in my mind a specific 
example and watching it go (Feynman 1985, p. 244). 

By contrast, Zazkis (2001) observes that starting with more complex problem 
situations and more complex numbers not only provides an opportunity for learners 
to simplify for themselves in order to see what is going on before returning to the 
more complex, but also provides an opportunity for learners to appreciate more fully 
the range and scope of generality implied by the particular exemplars. Furthermore, 
learners are not deceived by the attraction of doing simple computations with small 
numbers rather than attending to underlying structure. 
This survey illustrates a diversity of approaches to examples in learning and teaching. 
In some cases the succession of examples is the important feature of their use. Their 
explicit and implicit similarities and differences, the number and variety exhibited, 
and their increasing complexity can all be used to promote inductive learning. In 
other cases a single example is intended as a generic placeholder for a completely 
general expression of a concept, object or process to support deductive thinking. 

4. EXAMPLES FROM A THEORETICAL PERSPECTIVE 
Examples play a key role in various classes of theories of learning mathematics. 
Social and psychological forces and situational peculiarities influence and inform 
both the examples and the concept images to which someone has access at any 
moment. The notion of a personal example space nicely complements the notion of a 
concept image in this respect. Thinking in terms of variation highlights the 
importance both of the succession of examples and the aspects which are varied in 
that succession in affording learners access to key features of a concept or technique. 
4a The role of examples in doing mathematics 

Various mathematicians have written about the importance of examples in 
appreciating and understanding mathematical ideas and in solving mathematical 
problems (e.g. Pólya, Hilbert, Halmos, Davis, Feynman). Whenever a mathematician 
encounters a statement that is not immediately obvious, the ‘natural’ thing to do is to 
construct or call upon an example so as to see the general through intimate 
experience of the particular (Courant 1981). When a conjecture arises, the usual 



practice is alternately to seek a counter example and to use an example perceived 
generically to see why the conjecture must be true (Davis & Hersh 1981). 

Often a mathematician will detect and express a structural essence which lies behind 
several apparently different situations. Out of this arises a new unifying concept and 
an associated collection of definitions and theorems. Sometimes a particular example 
will suggest some feature which can be changed, leading to a richer or more unifying 
concept, or at least to an enriched awareness of the class of objects encompassed by a 
theory. It is not examples as such which are important to mathematicians, but what is 
done with those examples, how they are probed, generalised, and perceived.  
4b The role of examples in theories of learning mathematics 
The importance of encounters with examples has been a consistent feature of theories 
and frameworks for describing the learning of mathematics This section offers a very 
brief overview of different ways in which theories of learning have used examples.  
How people abstract or extract a concept from examples has been specifically studied 
in psychology from the point of view of how examples and non-examples influence 
the discernment of concepts (e.g. Bruner 1956, Wilson 1986, 1990, Charles 1980, 
Petty & Jansson 1987). In Artificial Intelligence attention on default parameters 
(expectations and assumptions) for triggering frames (patterns of behaviour) were 
used to try to reproduce concept acquisition (e.g. Winston 1975, Minsky 1975).  
Genetic epistemology (Piaget 1970, see also Evans 1973) assumes that individuals 
actively try to make sense of their world of experience, supported by social groupings 
(Confrey 1991) in which they find themselves. It underpins many current theories of 
mathematics learning, by assuming the impact of new examples on existing mental 
schema through assimilation and accommodation. Piaget’s notion of reflective 
abstraction (Dubinsky 1991) implies experiences and actions performed by the 
learner through which abstraction is possible.  
Building on Piaget’s notion of schema, Skemp (1969) wrote about the learning of 
mathematical concepts through abstraction from examples, which meant that the 
teachers’ choice of which examples to present to pupils was crucial. His advice on 
this topic includes consideration of noise, that is the conspicuous attributes of the 
example which are not essential to the concept, and of non-examples, which might be 
used to draw attention to the distinction between essential and non-essential attributes 
of the concept and hence to refine its boundaries. Once a concept is formed, later 
examples can be assimilated into that concept (Skemp 1979) and a more sophisticated 
concept image can be formed (Tall and Vinner 1981). Vinner (1983, 1991) describes 
a gap between learners’ concept image and the concept definition: concept images 
can be founded on too limited an exploration of the examples encountered so that 
features of the examples which are not part of the concept are retained in the concept 
image, a process recognised and elaborated on by Fischbein (1987) as figural 
concepts. Concept images are therefore often limited to domains with which learners 



are most familiar and so may be too limited to be useful. A considerable part of 
research results on wrong, alternative and partial conceptions can be convincingly 
interpreted in this way. Thus improving learners’ conceptions amounts to reducing 
the gap between their concept images and the concept definition. Tall and Vinner  
point to the importance of the examples in closing this gap.  
Thorndike et al. (1924) followed a behaviourist line in using examples as stimuli to 
provoke learning responses, and Gagné (1985) developed this into a hierarchy of 
behaviours of increasing complexity. Dienes (1960) used cleverly constructed games 
and structured situations as examples of mathematical structures in which to immerse 
learners so that they would experience examples of sophisticated mathematical 
concepts through their own direct experience. Others follow historical precedents in 
trying to describe what it is like for learners to make sense of new concepts (Davis 
1984) and worked examples (Anthony 1994). 
Marton and colleagues (Marton & Booth 1997, Marton & Tsui 2004 ) developed the 
notion of varied examples as a way to encounter concepts noting that what is needed 
is variation in a few different aspects closely juxtaposed in time so that the learner is 
aware of that variation as variation. Marton even formulates a definition of learning 
as becoming aware of one or more dimensions of variation which an example could 
exhibit. Since teacher and learner may not appreciate the same dimensions of 
variation, Watson & Mason (2005) expanded this to appreciating a particular concept 
as being aware of dimensions of possible variation and with each dimension, a range 
of permissible change within which an object remains an example of the concept. 
Recent articulations which connect the genesis of mathematical knowledge with the 
processes of coming to know also clarify the central role of examples as the raw 
material for generalizing processes and conceptualizing new objects. Sfard (1991) 
follows Freudenthal (1983) in seeing learners moving from an operational to a 
structural understanding of concepts through a process of interiorisation and 
condensation leading to reification. Interiorisation and condensation are slow, 
gradual processes, taking place over time and through repeated encounters with 
examples. Dubinsky and his colleagues (see Asiala et al. 1996) have introduced a 
theory of the development of mathematical knowledge at undergraduate level which 
they call APOS theory (actions, processes, objects, schemas). Again the theory 
predicts that encounters with examples will be part of the process by which learners 
will move from action to process and then to object conceptions. The Pirie & Kieren 
(1994) onion model of the growth of understanding focuses on image construction 
and folding back between states, yet still recognizes that it is direct experience of 
examples which contribute to the formation of personal images and knowings.  
Another aspect of the relationship between examples and concepts or processes 
centres on the notion of generic example, or prototype. A generic example: 



involves making explicit the reasons for the truth of an assertion by means of operations 
or transformations on an object that is not there in its own right, but as a characteristic 
representative of the class. (Balacheff 1988, p. 219) 

Freudenthal (1983) describes examples with this potential as paradigms. A strand of 
psychological research beginning with Rosch (1975) has explored how these 
prototypes (representatives of categories) are used in reasoning. Hershkowitz (1990) 
drew attention to the tendency to reason from prototypes rather than definitions in 
mathematics, and the errors that this kind of reasoning can produce. Often learners' 
concept image is largely determined by a limited number of prototype examples (e.g. 
Schwarz & Hershkowitz 1999) so it is important to go beyond prototypes using non-
typical examples to push toward and beyond the boundary of what is permitted by the 
definition, becoming aware of that boundary during the process (the range of 
permissible change). Approaches to helping learners expand their reasoning beyond 
prototypes have been described in a number of specific areas of mathematics.  
Dreyfus (1991) discusses the role of examples in abstraction, and in particular the 
different uses that might be made by learners of single examples and collections of 
examples. He suggests that, for a relatively sophisticated mathematical learner, a 
definition and a single example may be sufficient, whereas less experienced learners 
may need large numbers of carefully selected examples before they can abstract the 
properties of the concept.  
4c The theory of personal example spaces 
The collection of examples to which a learner has access at any moment, and the 
richness of interconnection between those examples (their accessible example space) 
plays a major role in what sense learners can make of the tasks they are set, the 
activities they engage in, and how they construe what the teacher-text says and does. 
Zaslavsky & Peled (1996) point to the possible effects of limited example-spaces 
accessible to teachers with respect to a binary operation on their ability to generate 
examples of binary operations that are commutative but not associative or vice versa. 
Watson and Mason (2005) formulated the notion of a personal example space as a 
tool for helping learners and teachers become more aware of the potential and 
limitations of experience with examples. They identify two principles: 

Learning mathematics consists of exploring, rearranging, gaining fluency with and 
extending your example spaces, and the relationships between and within them.  
Experiencing extensions of your example spaces (if sensitively guided) contributes to 
flexibility of thinking and empowers the appreciation and adoption of new concepts. 

A personal example space is what is accessible in response to a particular situation, to 
particular prompts and propensities. Example spaces are not just lists, but have 
internal idiosyncratic structure in terms of how the members and classes in the space 
are interrelated. Their contents and structures are individual and situational; similarly 
structured spaces can be accessed in different ways, a notable difference being 
between algebraic and geometric approaches. Example spaces can be explored or 



extended by searching for situationally-peculiar examples as doorways to new 
classes; by being given further constraints in order to focus on particular 
characteristics of examples; by changing a closed response into an open response; by 
glimpsing the infinity of a class represented by a particular.  
4d Summary 
While there is a long history of attention to the provision of suitable examples 
intended to indicate the salient features which make examples exemplary, recent 
developments indicate that social and psychological forces and peculiarities play a 
central role in both the personal example space to which learners have access and the 
concept image which they develop. Particular attention needs to be paid to the 
succession of examples and both the dimensions of possible variation and their 
associated ranges of permissible change to which learners are afforded access.  

5. EXAMPLES FROM A TEACHER’S PERSPECTIVE1 

The treatment of examples presents the teacher with a complex challenge, entailing 
many competing features to be weighed and balanced, especially since the specific 
choice of and manner working with examples may facilitate or impede learning. Note 
that the aspects mentioned here are interrelated, not disjoint.  
5a. Examples as tools for communication and explanation 

Examples are a communication device that is fundamental to explanations and 
mathematical discourse (Leinhardt 2001). The art of constructing an explanation for 
teaching is a highly demanding task (Ball 1988; Kinach 2002a, 2002b), as described 
by Leinhardt et al. (1990):  

Explanations consist of the orchestrations of demonstrations, analogical representations, 
and examples. […]. A primary feature of explanations is the use of well-constructed 
examples, examples that make the point but limit the generalization, examples that are 
balanced by non- or counter-cases. (p. 6, ibid).  

Leinhardt & Schwarz (1997) claim that when teaching meta-skills  
The purpose of an instructional explanation is to teach, specifically to teach in the context 
of a meaningful question, one deserving an explanation. (p. 399, ibid).  

That is to say that the meaningful question, the example, plays a key role in the 
instructional explanation.  

Peled & Zaslavsky (1997) distinguish between three types of counterexamples 
suggested by mathematics teachers, according to their explanatory power: specific, 
semi-general and general examples. They assert that general (counter)-examples 
explain and give insight regarding the reason why a specific conjecture is not true and 
strategies to produce more counterexamples.  



The conjecture that two rectangles with the same 
diagonal must be congruent, is false. The diagram (taken 
from Peled & Zaslavsky 1997) can be regarded as a 
general counter example because it communicates an 
explanation of why the conjecture is false without 
reference to particular values. Furthermore, inherent to 
this example is the notion that there are an infinite 
number of different rectangles with the same diagonal.  

With respect to communication, a teacher must take into consideration that an 
example does not always fulfil its intended purpose (Bills 1996; Bills & Rowland 
1999). Mason & Pimm (1984) suggest that a generic example that is meant to 
demonstrate a general case or principle may be perceived by the learners as a specific 
instance, overlooking its generality. What an example exemplifies depends on  
context as well as perceiver.   

Attributes which make an example ‘useful’ include:  
Transparency: making it relatively easy to direct the attention of the target audience to 
the features that make it exemplary.  
Generalisability: the scope for generalisation afforded by the example or set of examples, 
in terms of what is necessary to be an example, and what is arbitrary and changeable. 

Examples with some or all of these qualities have the potential of serving as a 
reference or model example (Rissland-Michener 1978), with which one can reason in 
other related situations, and can be helpful in clarifying and resolving mathematical 
subtleties. Clearly, the extent to which an example is transparent or useful is 
subjective. Thus, the role of the teacher is to offer learning opportunities that involve 
a large variety of 'useful examples' (yet not too large a variety that might be 
confusing) to address the diverse needs and characteristics of the learners. 

To illustrate some of the distinctions mentioned so far, consider the following 
examples of a quadratic function (these examples and the subsequent elaboration 
appear in Zaslavsky & Lavie 2005, submitted):   

( ) ( )1 3y x x= + ⋅ − ;    ( )2 41y x −= + ;     2 2 3xy x − −=  

These are three different representations of the same function. Each example is more 
transparent about some features of the function and more opaque with respect to 
others (e.g., roots; position of the vertex and minimum value; y-intercept). However, 
these links are not likely to be obvious to the learner without some guidance on how 
to read or interpret the expressions. Moreover, it is not even clear that learners will 
consider all three as acceptable examples of a quadratic function, since, for example 
the power of two is less obvious in the factored form, and a quadratic may have been 
defined to look like the third expression. A teacher may choose to deal with only one 
of the above representations, or s/he may use the three different representations in 



order to exemplify how algebraic manipulations lead from one to another, or in order 
to deal with the notion of equivalent expressions.  

Each different representation communicates different meanings and affords different 
mathematical engagement, but there are further possible differences in perception. 
What a learner will see in each example separately and in the three as a whole 
depends on the context and classroom activities surrounding these examples, and her 
own previous experience and disposition. A learner who appreciates the special 
information entailed in each representation may be informed by them to be alert to 
their differing qualities in the future, even to the extent of effectively using them as 
reference examples or reference forms when investigating other (quadratic) functions.  

To an expert there are some irrelevant features, such as the use of particular letters 
yet, a learner may regard x and y as mandatory symbols for representing a quadratic 
function. Another irrelevant feature is the fact that in all three representations all the 
numbers are integers. A learner may implicitly consider this to be a relevant feature, 
unless s/he is exposed to a richer example-space. Learners may also generalise and 
think that all three representations can be used for any quadratic function.  

None of these considerations need be conscious; even the learner who is not 
deliberately making sense of what is offered is still becoming familiar with a 
particular range of examples which create a sense of normality. Hence, the specific 
elements and representation of examples, and the respective focus of attention 
facilitated by the teacher, have bearing on what learners notice, and consequently, on 
their mathematical understanding. Paul Goldenberg (personal communication) 
pointed out that sometimes an example can be too specific to be useful; learners and 
teachers need to be aware that the shift to seeing examples as ‘representative and 
therefore arbitrary’ is non-trivial and may need classroom discussion. 
5b. Uses of examples for teaching 

Some authors have categorised examples according to the use for which they are 
particularly suited. Notable amongst these, Rissland-Michener (1978) distinguishes 
four types of examples (not necessarily disjoint), which have epistemological 
significance: start-up (which help motivate basic definitions and results, and set up 
intuitions in a new subject), reference (which are used as standard instances of a 
concept or a result, model, and counterexample and referred to repeatedly in the 
development of theory), model (which are paradigmatic, generic examples) and   
counterexamples (which demonstrate that a conjecture is false and are used to show 
the importance of assumptions or conditions in theorems, definitions and techniques).  

Rowland and Zaslavsky (2005) distinguish between providing examples of 
something as raw material for inductive reasoning, as particular instances of a 
generality, and providing an environment for practice. For example, in order to teach 
subtraction by decomposition, a teacher might work through say, 62-38 in column 



format; for practice a collection of well-chosen subtly varying particular cases might 
be set as an exercise. In the case of concepts, the role of examples is to facilitate 
abstraction. Once a set of examples has been unified by the formation of a concept, 
subsequent examples can be assimilated by the concept.  

Another kind of use of examples in teaching, more often called ‘exercises’, is 
illustrative and practice-oriented. For us, exercises are examples, selected from and 
indicative of a class of possible such examples. Typically, having learned a procedure 
(e.g. to add 9, to find equivalent fractions, to solve an equation), the learner rehearses 
it on several such ‘exercise’ examples. This is first in order to assist retention of the 
procedure by repetition, then later to develop fluency with it (Rowland & Zaslavsky 
2005). When the teacher repeatedly demonstrates how to perform on these practice 
exercises, the learning mechanism that is facilitated may share some characteristics of 
the learning from worked-out examples (see section 6b).  

Hejný (2005) notes that the focus of attention needs to be not only on what can be 
generalised from one example, but also on a structured set of tasks which may direct 
learners to find a general or abstract idea. For example, he suggests helping learners 
in primary grades discover a formula for the area of a triangle, by offering them a 
rich problem situation, from which a general relationship can be induced.  

Divide a given rectangle ABCD by a segment EF to 
make two rectangles AEFD and EBCF. These rectangles 
are divided by diagonals AF and BF into four right-
angled triangles. Consider eight shapes: five triangles: 
AEF, AFD, EBF, BCF, ABF and three rectangles: 
ABCD, AEFD, EBCF.  

Given the area of two of these shapes, find the areas of all the others; 
Given the length of three segments from the following: AE, EB, AB, DF, FC, DC, AD, 
EF, BC find the areas of all the triangles. 
What do you have to know to find the area of triangle ABF? 

Most of the studies that deal with sets of example suggest that the specific sequence 
of examples has an impact on learning. In particular, it is recommended to combine 
examples and non-examples within a sequence of examples, in order to draw 
attention to the critical features of the relevant examples. There is an argument for 
examples to be ‘graded’, so that learners experience success with routine examples 
before trying more challenging ones. However, it should be noted that sequencing 
examples from ‘easy’ to ‘difficult’ is not always effective (Tsamir 2003). Exercises 
designed for fluency are likely to be differently structured to exercises designed to 
promote or provoke generalisation (Watson & Mason 2006). 

Leron (2005) uses the term generic proof to refer to what Movshovitz-Hadar (1988) 
calls a transparent proof or pseudo proof. Leron illustrates generic proofs with 



reasoning to justify the fact that every permutation can be decomposed as the product 
of disjoint cycles. As a simpler example consider the proof that the sum of two odd 
numbers is an even number. One can use two ‘general’ odd numbers that are not 
special in any obvious way, e.g. 137 and 2451, and present a ‘proof’ for these two 
numbers, e.g.: 137 + 2451= (136 + 1) + (2452 – 1) = 136 + 2452. This form of 
presentation can be read generically as justification that the sum of any two odd 
numbers is equal to the sum of two even numbers and hence even. However, learner 
attention has to be directed appropriately in order to have this effect. The specific 
choice of examples together with the transparency with respect to the main ideas of 
the proof both play an important role. 

Finally, examples (or exercise examples) can be used for assessment of learners’ 
performance and understanding in a broad sense. The more conventional way would 
be to present learners with examples of problems or mathematical objects and ask 
them to follow certain instructions (e.g., solve the problem, compare the objects etc.). 
In this, the teacher assumes that these examples are cases of a more general class of 
problems or objects, and considers learners’ performance with these examples as a 
representation of their knowledge. In a way, several researchers use carefully selected 
examples to investigate learners’ schemes (e.g., Dreyfus & Tsamir 2004; Peled & 
Awawdy-Shahbari 2003). Section 7 elaborates on researchers’ use of examples.  

Another approach that some teachers (as well as researchers) use for revealing 
learners’ conceptions and ways of thinking is by asking learners to generate their own 
examples of problems and of objects (e.g. van den Heuvel-Panhuizen et al. 1995, 
Zaslavsky 1997, Hazzan & Zazkis 1999, Watson & Mason 2005). 
5c. Teachers’ choice of examples 

Research on teachers’ choice of examples is rather scarce. Ball et al. (2005) maintain 
that a significant kind of mathematical knowledge for teaching involves specific 
choices of examples, that is, considering what numbers are strategic to use in an 
example. Similarly, Rowland & Zaslavsky (2005) note that the choice of 62-38 in 
column format to teach subtraction by decomposition is not a random choice: the 
digits are all chosen with care because constructing examples is not an arbitrary 
matter, though there is usually some latitude in the choice of effective examples. The 
8 could have been a 9; on the other hand, it could not have been a 2. It could have 
been a 4, say, but arguably the choice of 4 is pedagogically less effective than 8 or 9, 
because subtracting 4 from 12 would lead some pupils to engage in finger-counting, 
distracting them from the procedure they are meant to be learning. Attending to the 
range of change of digits that is permissible without changing the learners’ 
experience (Watson & Mason 2005) is essential in choosing instructional examples. 

Novice teachers’ poor choices of examples have been documented by Rowland et al. 
(2003) who considered the way in which student teachers give evidence of their 
subject knowledge in their teaching of mathematics to primary school children, one 



aspect being the choice of examples. The authors present instances of choices which, 
in their words, ‘obscured the role of the variable’ (p. 244): reading a clock face set at 
half past the hour by using the example of half past six; using as the first example to 
illustrate the addition of nine by adding 10 and subtracting one, adding nine to nine 
itself. Often the unintentionally ‘special’ nature of an example can mislead learners. 

In selecting instructional examples it is important to take into account learners’ 
preconceptions and prior experience. In particular, careful construction of examples 
could enable teachers to identify and help learners cope with the effect of previous 
knowledge and existing schemes (implicit models) on the construction of new 
knowledge. Research findings on learning could serve as a rich source for teachers’ 
selection of effective examples for this purpose. For example, Peled & Awawdy-
Shahbari (2003) suggest asking learners to compare carefully selected pairs of 
decimal or common fractions, in order to identify the implicit models by which they 
operate. An effective example for decimal fractions would be to ask learners which 
number is bigger: 2.8 or 2.85. Some learners claim that 2.8 is bigger “because tenths 
are bigger than hundredths”. Similarly, in comparing 5

6  and 3
5 , some will say that 3

5  
is larger because fifths are larger than sixths, because they focus on the size of the 
fractional part and ignore the number of parts. Similarly, the study by Tsamir & 
Tirosh (1999) regarding learners’ tendencies to address inclusion considerations 
when dealing with comparisons of infinite sets informed the choice of examples 
Tsamir and Dreyfus subsequently presented to learners (Tsamir & Dreyfus 2002).  

In secondary school the considerations in selecting specific examples seem to be far 
more complex than in primary school. Zaslavsky and Lavie (2005, submitted) and 
Zaslavsky and Zodik (in progress) discuss teachers’ considerations underlying their 
choice of examples. Issues that came up in their study include: the tension between 
the teachers’ desire to construct ‘real-life’ examples and the mathematics accuracy 
they feel they are ‘sacrificing’ when doing so; the dual message of randomly selected 
examples since the randomness may convey the generality of the case, however it 
may also yield impossibilities or inadequate instances; the visual entailments of 
examples in geometry, and the ambiguity regarding what visual information may be 
induced and what should not. A classic instance is that when a ‘general’ triangle is 
sketched, some learners rely on the relative magnitude of length of its sides, leading 
to examiners asserting with every diagram ‘not drawn to scale’.  
5d. Summary of teacher perspective 

The use of examples in the classroom is an essential but complex terrain. It involves 
careful choices of specific examples which facilitate the directing of attention 
appropriately so as to explain and to induce generalisations. Desirable choice of 
examples depends on many factors, such as the teaching goals and teachers’ 
awareness of their learners’ preconceptions and dispositions. 



It has been proposed (e.g., Tall & Vinner 1981, Chi et al. 1989, Chapman 1997) that 
the key feature of learning is not what is presented but rather what is encoded in the 
learner's mind, what is constructed by the learner, what practices are internalised. 

6. EXAMPLES FROM A LEARNER’S PERSPECTIVE 
The crucial factors for appreciating and assimilating concepts, and for learning 
techniques are the form, format and timing of examples encountered, and experience 
of ways of working with and on examples. When invited to construct their own 
examples, learners both extend and enrich their personal example space, but also 
reveal something of the sophistication of their awareness of the concept or technique.  

6a. Concept formation 
Davis (1984) described mathematical objects emerging from specific experiences:  

When a procedure is first being learned, one experiences it almost one step at time; the 
overall patterns and continuity and flow of the entire activity are not perceived. But as 
the procedure is practiced, the procedure itself becomes an entity - it becomes a thing. 
[…] The procedure, formerly only a thing to be done - a verb - has now become an object 
of scrutiny and analysis; it is now, in this sense, a noun. (pp. 29-30, ibid).  

In the process of concept formation, the operational conception (focussing on the 
process) is often first to develop, gradually moving towards a structural approach 
(focusing on the object) (Rumelhart 1989). Gray and Tall (1994) use the example ‘2 
+ 3’ to illustrate how a symbol sequence or expression may be conceived either as aa 
process (add) or a concept (sum). A learner might perceive an example either as a 
process, or as an object, or both (proceptually). For example, if a learner’s only 
experience of equations is of being shown how to solve them, with the language only 
of ‘doing’, then it is unlikely that a conceptual understanding will be formed easily. 

Charles (1980) argues that while for ‘easy’ concepts a sequence of examples from 
which to generalise may be sufficient, for more ‘difficult’ concepts non-examples are 
also necessary to delineate the boundaries of the concept. Wilson (1986) points out 
that learners can be distracted by irrelevant aspects of examples, so the presence of 
non-examples provides more information about what is, and is not, included in a 
definition. Since examples are far more effective than formal definitions in 
appreciating concept (Vinner 1991), learning might be enhanced by contact with a 
rich variety of examples and non-examples. Paul Goldenberg (private 
communication) observed that there is a big difference between noticing for oneself a 
salient feature in a collection of examples and then naming it, and being given a new 
word followed by a sequence of objects which are supposed to illustrate its meaning.  

How rich and in what variety needs careful study however. Bell (1976) reported that 
school learners often do not recognize the significance of counterexamples and would 
not necessarily alter their conjectures or proofs if a counterexample did crop up, and 
this is reflected in the observation that undergraduates also tend to monster-bar 



(MacHale 1980) rather than modify their concept image. It is fairly obvious that a 
limited experience of examples and non-examples may lead to a restricted concept 
image, but it is also the case that limiting mathematics to sequences of examples ‘to 
be done’, rather than sets of examples to be understood, may induce learners to focus 
on completing their tasks rather than on making sense of the tasks as a whole 
(Watson & Mason 2006). A succession of examples does not add up to an experience 
of succession. Not attending to the whole may result in an overly restricted 
understanding of the nature of mathematics.  

6b. Learning from worked-out examples 
Several studies point to the contribution of worked-out examples for learning to solve 
mathematical problems (e. g. Reed et al. 1985; Reimann & Schult 1996; Sweller & 
Cooper 1985). However, providing worked-out examples with no further 
explanations or other conceptual support is usually insufficient. Learners often regard 
such examples as specific (restricted) patterns which do not seem applicable to them 
when solving problems that require a slight deviation from the solution presented in 
the worked-out examples (Reed et al. 1985, Chi et al. 1989). Note however that the 
immensely insightful mathematician Ramanujan was, while a student, able to treat a 
book of summarised generalities as a sequence of particular examples!  
Watson & Mason (2002a, 2002b) suggest that worked-out examples might even 
inhibit learners' ability to generalise apart from recognition of the syntactical 
template. One explanation of this phenomena was given by Reimann & Schult 
(1996), based on Artificial Intelligence literature. They claim that the information 
captured and attention drawn in worked-out examples is mostly the solution steps, 
which limit matching and modification processes. Furthermore, Reimann & Schult 
(ibid) assert that it is important to specify in a worked-out example the steps that 
were taken and the reasons for taking them, that is, how attention is directed. This is 
consistent with the findings of Chi et al. (1989) and Renkl (2002) who emphasise the 
importance of learners’ self-explanation of the worked-out example, and also with the 
work of Eley & Cameron (1993) who found that learners considered an explanation 
to be better if it included the ‘trigger’ for each step. Worked-out examples may 
enhance learners' learning, and in particular their problem solving performance, but 
only if they are used in ways which encourage explanation and reasoning. 
Much of the research in this area has been directed towards a view of learning as 
measurable by performance of techniques and solution of word problems, rather than 
of learning as conceptual understanding or mathematical enquiry. The role of 
worked-out examples in conceptual understanding deserves further research. 

6c. The role of examples in mathematical reasoning and problem solving 
Examples can play a role in facilitating non-routine problem solving, a process in 
which reasoning about the situation allows the learner to apply and adapt sequences 
of techniques whose purposes need to be understood. If this is seen as a process of 



applying known techniques, the relevant worked-out examples which the learner has 
experienced need to be sufficiently different, and sufficiently explained, for the 
purpose of the techniques used to be understood. If, on the other hand, problem-
solving is seen as a process of modelling a situation and tackling it heuristically, a 
learner needs to have some knowledge of similar situations in order to be successful. 
One of the main processes of reasoning about novel situations is reasoning by 
appealing to similarity (Rumelhart 1989). Rumelhart refers to a continuum, moving 
from ‘remembering’ a suitable example to ‘analogical reasoning’. Another central 
kind of mathematical reasoning that necessitates generation of examples is proving 
by refutation. Addressing learners' difficulties in producing and using appropriate 
counterexamples is another challenge for teachers' use of examples (Zaslavsky & 
Peled 1996; Zaslavsky & Ron 1998). Pólya (1945, 1962) elaborates on the processes 
of inductive (example-based) reasoning, generalization, and analogical reasoning, all 
of which greatly depend on examples. 
It seems that all learners who are even only partially engaged try to generalise from 
sequences of examples, implicitly or explicitly, and that this is done by the natural 
process of discerning differences and similarities in what is available to be perceived. 
What they choose to stress and ignore, and what they ‘get from it’ is highly variable. 
Discerning invariance and variation explains many standard misconceptions in 
mathematics: learners generalise inappropriately, but in ways which can be seen to be 
the products of mathematical reasoning, given their experience. Thus learners are 
always engaged in mathematical reasoning whenever they are exposed to a set of 
examples of anything, although this may not be recognised or made explicit. 
There are many unresolved issues. For example, Hejny (personal communication) 
questions whether ‘natural’ generalisation is always the same kind of process, or 
whether it differs according to whether one is encountering a concept, a process, etc.. 
Novices and expert mathematicians alike depend on experiences with a single rich 
generic example, or else, as with most novices, numerous examples, in order to get 
some intuition about the situation and then try to generalise and reason from them. 
(Bills & Rowland 1999, Zaslavsky & Lavie 2005). This mixture of logical-based 
reasoning (using deductive mechanisms) and example-based reasoning (Lakatos 
1976) characterises mathematical competence at every level.  
Weber & Alcock (2004, 2005) documented how undergraduates learning to prove use 
examples in reasoning and constructing proofs. They recognised that professional 
mathematicians switch fluently between examples (specific cases) and formal 
definitions, so they asked how learners make the transition to this fluency, if this shift 
has not been made explicit for them. They found that example use for such learners is 
often illustrative and empirical rather than general and deductive. Where their 
reasoning failed, they were more likely to self-correct errors to do with the individual 
example than errors to do with the underlying rationality. Alcock & Weber (in press) 
then distinguished between two learners who used a referential approach to proof and 



a syntactical approach. The learner who used referential approach rejected examples 
as a tool for developing structural understanding and may have needed help in 
describing examples more formally, to see how doing so might offer the structure for 
a formal proof. The learner who approached the task of proof construction as if it 
were solely a manipulative exercise might have benefited from using specific 
examples to give her work some meaning, but self-generation of appropriate 
examples is not trivial for learners who are unused to doing so.  

6d. The role of learner generated examples in learning 
Learning is an activity which requires initiative and intention. Getting learners to 
construct their own examples proves to be a highly effective strategy for transferring 
initiative from the teacher to the learner (e.g. Zaslavsky 1995, Niemi 1996, Dahlberg 
& Housman 1997, Hazzan & Zazkis 1999, Zazkis 2001, Watson & Mason 2005). 
The current shift from teacher-centred to learner-centred pedagogical environments 
in order to foster mathematical classroom discourse, fits with encouraging learners to 
construct their own examples, which in turn enables teachers to detect the kinds of 
understandings reflected by learners' examples (e.g. Watson & Mason 2005, and as 
suggested by Zaslavsky 1995). Creation of an example is a complex task that calls 
upon conceptual links among concepts (Hazzan & Zazkis 1999). Dahlberg & 
Housman (1997) showed that learners who generated examples as a strategy of 
learning were more likely to understand new concepts. 'Give an example of …' tasks 
prove very useful in assessing learners’ understanding (Niemi 1996).  
When learners have been asked to create their own examples, they experience the 
discovery, construction or assembly of a space of objects together with their 
relationships. Whereas Rissland-Michener (1978) saw example spaces as canonically 
objective, construction is often idiosyncratic, combining modifications of 
conventional and familiar objects to construct new objects, to recognise new 
relationships, and to enjoy new meanings and personal understandings.  
Easily-available canonical spaces, such as those teachers and textbooks commonly 
use, form suitable starting points for further extension, just as in any learning the 
learner can only start from what is already known, which may be a proper subset of 
what is relevant. In other words, through construction, learners become aware of 
dimensions of possible variation and corresponding ranges of permissible change 
within a dimension, with which they can extend their example spaces.  
From a mathematical perspective it may be possible for an expert to see a large 
potential space of examples, or at least to have past experience of a large space, but 
what comes to mind in the moment may only be fragments of that potential. Spaces 
are often dominated by strong images, some of which may be almost universal. What 
is accessible in one situation may not be so readily accessible in another. The 
experience of constructing examples for oneself can contribute to increased 
sensitivity in future, triggering richer example spaces.  



6e. Summary of learner perspective 
Examples play a crucial role in learning about mathematical concepts, techniques, 
reasoning, and in the development of mathematical competence. However, learners 
may not perceive and use examples in the ways intended by teachers or textbooks 
especially if underlying generalities and reasoning are not made explicit. The 
relationship between examples, pedagogy and learning is under-researched, but it is 
known that learners can make inappropriate generalisations from sets of examples, or 
fail to make any conceptual inferences at all if the focus is only on performance of 
techniques. The nature and sequence of examples, non-examples and counter-
examples has a critical influence of what opportunities learners are afforded, but even 
more critical are the practices into which learners are inducted for working with and 
on examples.  
The relationship between examples and logical deduction in proof, or analogical 
reasoning in problem solving, cannot be assumed to be assimilated or even 
accommodated by learners without explicit support and provocation. It is valuable for 
learners to create their own examples, since this process requires complex 
engagement with concepts and mathematical structures 
Learners naturally perceive variation and invariance in what they experience, and 
make generalisations from this activity, developing example spaces whose contents 
may be triggered in future situations. How these contents are structured and inter-
related is the outcome of past experience and with ways of working with examples. 

7. EXAMPLES FROM A RESEARCHER’S PERSPECTIVE 
From a researcher’s perspective the role of examples in mathematics education 
research concerns choices based instructional design, in research on learning, and the 
role of case studies, considered as research examples, in theory development in 
mathematics education. The three points will be illustrated by means of examples 
from a research project, in which they are prominent without, however, being 
explicit.  

7a. Research-based design 
Research findings depend critically on specific properties of examples just as much 
as teaching and learning. For example, in the study by Dreyfus & Tsamir (2004); and 
Tsamir & Dreyfus (2002, 2005), which deals with the comparison of the cardinalities 
of infinite sets, the task set initially was to compare the numbers of elements in the 
set of natural numbers with the number of elements in the set of perfect squares. Two 
representations were used: numeric and geometric. In the numeric representation, the 
sets were represented on three cards:  

Card A {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …} 
Card B {1, 4, 9, 16, 25, 36. 49, 64 81, 100, 121, 144, 169, 196, 225, …} 



Card M was identical to Card A. The inclusion relationship was highlighted by 
asking learners to choose and mark the perfect squares on Card M.  

Card M { 1  2, 3, 4  5, 6, 7, 8, 9  10, 11, 12, 13, 14, 15, 16  17, …} 

The geometric representation used squares and the correspondence between side 
length and area (see Tsamir & Dreyfus 2002, for a detailed description). 
The examples in this first task were chosen with attention to research findings 
(Tsamir & Tirosh 1999) regarding learners’ tendencies to think in terms of  inclusion 
when presented with a numeric representation of the task, and to identify the one-to-
one correspondence in reaction to the geometric representation of the same task. 
Consequently, learners may be expected to reach contradictory answers. 
After several more tasks using either or both representations as well as algebraic 
correspondence rules between the sets, the task in the third session was to compare 
the set A of natural numbers to a set V, which was given numerically as {0, 1, 3, 6, 
10, 15, 21, 28, 36, 45, 55, 66, 78, ...} (Tsamir & Dreyfus 2005). Here the algebraic 
rule of the one-to-one correspondence is not easily apparent, nor is the establishment 
of such a correspondence geometrically. Without adequate preparation, a learner 
could thus be expected to use only inclusion considerations.  
When designing a sequence of tasks, whether for the purpose of teaching or research, 
the characteristics of each specific example need to be taken into consideration. 
These characteristics include the different representations in which the example can 
be cast, and whether the example triggers certain types of reasoning, such as analogy 
or cognitive conflict. Whereas in teaching not all examples will usually be 
determined ahead of time since inspired and creative teaching involves sensitivity to 
the flow of events and on the spot decisions by the teacher, in research, on the other 
hand, researchers usually do plan all examples in advance; nevertheless, decisions to 
add or omit examples in a specific stage of the research may be made on the basis of 
the analysis of previous stages or exigencies in the moment. 

7b. Research on learning 
Learners’ abstract mathematical constructs usually emerge from their occupation 
with specific cases, i.e. examples. This becomes particularly clear in the research 
mentioned above, which analyzes the case of one learner, Ben, addressing the 
comparison of powers of infinite sets. How and what exactly learners may or may not 
learn from examples only becomes clear after detailed, careful and controlled 
observation, and analysis of the observations, by researchers. 
As an example, consider what Ben did (not) learn from the two tasks presented 
above. When presented with the first task, Ben claimed, as expected, that the number 
of elements in set A was larger than the number of elements in set B, explaining that 
“set B is actually part and I mean REALLY part of set A”, and that “it is easy to 
notice that the further I go [in set B] the larger the intervals”. Over the next two 



sessions, Ben gained insight into the problematic aspects of using inclusion and 
correctly solved this and all other tasks presented to him by using one-to-one 
mappings between infinite sets in numeric/algebraic and geometric representations. 
He reached what the researchers interpreted as consolidated in-depth constructs 
allowing him to solve such tasks, and it seems that this was on the basis of a carefully 
designed sequence of tasks. For example, with respect to the comparison of set A 
above with the set of natural numbers greater than 2, he explained:  

“The two extra, unmatched elements stand out and trigger the conclusion that here we 
have infinity and here infinity plus two, which SEEMS larger. Instead of matching 
numbers at the same ORDINAL place [pause]. I mean, assuming that if for each place n 
there is one and only one element in each the two sets, then they go on hand in hand, 
corresponding, and extra elements are just in our imagination. The infinite nature makes 
it possible that no matter which number you chose in one of the sets, at the same ordinal 
place there is a matching specific number placed in the other set. It cannot be that the 
numbers in the second set are finished and cannot provide a matching element, because 
the set is infinite, and this behavior of plus two goes on, like, forever.” 

In the third session, Ben was asked to compare the sets A and V (see above). This 
example, which was intended to introduce more challenging tasks, turned out to 
provide the researchers with insight into the complexity of what had been interpreted 
as Ben’s consolidated knowledge about the comparison of countable infinite sets. For 
over 20 minutes, Ben assiduously tried to establish, geometrically or algebraically, a 
one-to-one correspondence between A and V. He even noticed that there is a one-to-
one correspondence between set A and the set of differences between successive 
elements of V. But then he ended up concluding,  

“The differences between successive elements get larger and larger. Wow! REALLY 
larger. I see. Set V consists of fewer elements. REALLY fewer.”  

Even insistent questioning by the interviewer did not sway his opinion. The 
interviewer remarked:  

“You once told me that using inclusion and correspondence leads to contradiction. And 
then you read that only equivalence correspondence should be used for comparing 
infinite sets. Right?”  

To this, Ben replied that yes, indeed, using inclusion and one-to-one correspondence 
may lead to a contradiction, and that he had not used inclusion except to prove that 
there exists no one-to-one correspondence. 
Based as it was on careful choice of a sequence of examples, this research has 
advanced our understanding of the important characteristics of consolidation 
(Dreyfus & Tsamir 2004). Equally interestingly, the choice of the introductory 
example to the third session also turned out to have an important, though unplanned 
role in the research because it led to modification of our conception of consolidation.  
Research on learning is necessarily based on examples because all learning is either 
fundamentally based on examples, or at least strongly supported by examples. The 



choice of examples thus influences research on learning, and possibly research 
results. Are such research results reliable? Not quite. An example was found where 
Ben’s supposedly consolidated knowledge broke down. Without this example, 
conclusions about Ben's consolidation of knowledge about the comparison of infinite 
sets would have been exaggerated.  
There are two ways researchers can counterbalance this influence of examples: One 
is to be acutely aware of it, and attempt to analyze it, thus recognizing the influence, 
and the possible ensuing limitations of any specific piece of research; and the other is 
to carry out several parallel research studies using different sets of examples, the 
subject of the next subsection. 

7c. Theory building 
It is generally agreed that theory building is one of the aims of research. In 
mathematics education, researchers' theoretical constructs about X (e.g. a specific 
learning process such as consolidating) tend to emerge from observation of a few, 
sometimes of a single example of X, combined with theoretical reflection on X. The 
small number of examples is a necessary limitation, due to the fact that examples are 
often “large” in the sense that they may require weeks of detailed observations and 
subsequent painstaking analysis of the observations.  
Research on constructing and consolidating knowledge is a case in point. Learners 
can be given opportunities for constructing knowledge – but they cannot be forced to 
construct; researchers thus provide learners with opportunities, and hope they can 
observe what they are looking for. Consolidating recently constructed knowledge, by 
definition, is an ongoing process that may last hours or years. Dreyfus & Tsamir 
(2004) have proposed characteristics of consolidation on the basis of a single, albeit 
detailed and very carefully analyzed, but still only a single example, namely the 
example of Ben constructing and consolidating his knowledge about the comparison 
of infinite sets. 
In a similar vein, the entire ‘RBC theory’ made up of Recognizing, Building-with and 
Constructing (Hershkowitz et al. 2001), within which the consolidation research is 
located, has been proposed on the basis of a single example, a 9th grade learner 
learning about rate of change as a function. Again, one example has served to 
propose an entire theory. Subsequently, the same and other researchers have shown 
that the theory is applicable to many other contexts, possibly after suitable 
modification. The theory has thus been strengthened and validated. It is important to 
stress that this validation is based on examples as well. In this sense, examples play a 
central and crucial role in the establishment of theory, the other basic element of 
theory building being theoretical reflection. 

7d. Summary of research perspective  
The choice of examples, and their sequencing, is crucial in instruction. Examples 
may be chosen for using specific representations and they may be sequenced to go 



from easy to difficult for triggering analogy, or from difficult to easy for triggering 
cognitive conflict (Tsamir 2003). Consequently, research on learning mathematics is 
necessarily based on examples as well, and the choice of mathematical examples may 
influence research results. Researchers can counterbalance this influence by being 
aware of it, by taking it into account when drawing conclusions, and by carrying out 
parallel research studies using different sets of examples. 
Moreover, there is a second level of example use in research. A research study, such 
as the one about Ben, may itself serve as an example that forms the basis for theory 
building. Additional examples of research studies are a tool for validating the theory.  

8. FOR FURTHER RESEARCH 
Particular attention needs to be paid to  

the sequencing and timing of a succession of examples, and both the dimensions of 
possible variation and their associated ranges of permissible change to which learners are 
afforded access.  
ways of directing learner attention so as to perceive exemplariness; 
ways of drawing teachers’ attention to the importance of the choices of examples they 
make when working with learners; 
the role of worked-out examples in concept formation; 
ways of directing learner attention so that sets of exercises are pedagogically effective. 
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