Core Maths C1

Revision Notes

November 2012

Core Maths C1

1	Algebra	3
	Indices	3
	Rules of indices	
	Surds	
	Simplifying surds	
	Rationalising the denominator	
	Quadratic functions	4
	Completing the square	
	Method 2	
	Factorising quadratics	
	Solving quadratic equations	
	by factorising.	
	by completing the square	
	by using the formula	
	The discriminant $b^2 - 4ac$ Miscellaneous quadratic equations	
	Quadratic graphs	
	- 01	
	Simultaneous equations	
	Two linear equations One linear and one quadratic	
	Inequalities	
	Linear inequalities	
	Quadratic inequalities	
	Qualitate inequalities	10
3	Coordinate geometry	11
	Distance between two points	11
	Gradient	
	Equation of a line	
	Parallel and perpendicular lines	
	T drahet and perpendicular thes	
4	Sequences and series	12
	Definition by a formula $x_n = f(n)$	12
	Definition by a formula $x_n = f(n)$.	
	Series and Σ notation	
	Arithmetic series Proof of the formula for the sum of an arithmetic series	
	Proof of the formula for the sum of an arithmetic series	13
5	Curve sketching	14
	Standard graphs	14
	Transformations of graphs	
	Translations	
	Stretches	
	Reflections in the x-axis	
	Reflections in the y-axis	

6	Differentiation	
	General result	
	Tangents and Normals	
	Tangents Normals	
7	Integration	
	Indefinite integrals	
	Indefinite integrals Finding the arbitrary constant	

1 Algebra

Indices

Rules of indices

$$a^{m} \times a^{n} = a^{m+n} \qquad (a^{m})^{n} = a^{mn} \qquad a^{n} = \sqrt[n]{a}$$
$$a^{m} \div a^{n} = a^{m-n} \qquad a^{0} = 1$$
$$a^{-n} = \frac{1}{a^{n}} \qquad a^{m} = \sqrt[n]{a^{m}} = \sqrt[n]{a^{m}} = \left(\sqrt[n]{a}\right)^{m}$$

Examples:

(i)
$$5^{-3} \times 5^4 = 5^{-3+4} = 5^1 = 5.$$

 $7^{-4} \times 7^{-2} = 7^{-4+-2} = 7^{-4-2} = 7^{-6} = \frac{1}{7^6}.$
(ii) $3^5 \div 3^{-2} = 3^{5--2} = 3^{5+2} = 3^7.$
 $9^{-4} \div 9^6 = 9^{-4-6} = 9^{-10} = \frac{1}{9^{10}}$
 $11^{-3} \div 11^{-5} = 11^{-3--5} = 11^{-3+5} = 11^2 = 121$
(iii) $(6^{-3})^4 = 6^{-3\times4} = 6^{-12} = \frac{1}{6^{12}}.$
(iv) $64^{\frac{2}{3}} = (64^{\frac{1}{3}})^2 = (4)^2 = 16$
(v) $125^{-\frac{2}{3}} = \frac{1}{125^{\frac{2}{3}}}$ since minus means turn upside down
 $= \frac{1}{2},$ since 3 on bottom of fraction is cube root, $\sqrt[3]{12}$

$$= \frac{1}{5^2},$$
 since 3 on bottom of fraction is cube root, $\sqrt[3]{125} = 5$
$$= \frac{1}{25}$$

Example: $(16^a) \div (8^b) = (2^4)^a \div (2^3)^b = 2^{4a} \div 2^{3b} = 2^{4a - 3b}.$

Example: Find x if
$$9^{2x} = 27^{x+1}$$
.

Solution: First notice that $9 = 3^2$ and $27 = 3^3$ and so $9^{2x} = 27^{x+1} \implies (3^2)^{2x} = (3^3)^{x+1}$ $\implies 3^{4x} = 3^{3x+3}$ $\implies 4x = 3x + 3 \implies x = 3.$

Surds

A surd is a 'nasty' root - i.e. a root which is not rational

Thus $\sqrt{64} = 8$, $\sqrt[3]{\frac{1}{27}} = \frac{1}{3}$, $\sqrt[5]{-243} = -3$ are rational and **not surds** and $\sqrt{5}$, $\sqrt[5]{45}$, $\sqrt[3]{-72}$ are irrational and **are surds**.

Simplifying surds

Example: To simplify $\sqrt{50}$ we notice that $50 = 25 \times 2 = 5^2 \times 2$ $\Rightarrow \sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$. *Example:* To simplify $\sqrt[3]{40}$ we notice that $40 = 8 \times 5 = 2^3 \times 5$ $\Rightarrow \sqrt[3]{40} = \sqrt[3]{8 \times 5} = \sqrt[3]{8} \times \sqrt[3]{5} = 2 \times \sqrt[3]{5}$.

Rationalising the denominator

Rationalising means getting rid of surds.

We remember that multiplying (a + b) by (a - b) gives $a^2 - b^2$ which has the effect of squaring **both** a and b at the same time!!

Example: Rationalise the denominator of
$$\frac{2+3\sqrt{5}}{3-\sqrt{5}}$$
.
Solution: $\frac{2+3\sqrt{5}}{3-\sqrt{5}} = \frac{2+3\sqrt{5}}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} = \frac{6+3\sqrt{5}\sqrt{5}+9\sqrt{5}+2\sqrt{5}}{3^2-\sqrt{5}^2}$
 $= \frac{21+11\sqrt{5}}{4}$.

Quadratic functions

A quadratic function is a function $ax^2 + bx + c$, where *a*, *b* and *c* are constants and the highest power of *x* is 2.

Completing the square.

Method 1

Rule: 1]	The coefficient of x^2 must be 1.		
2]	Halve the coefficient of x , square it then add it and subtract it.		
Example:	Complete the square in $x^2 - 6x + 7$.		
Solution:	1] The coefficient of x^2 is already 1,		

2] the coefficient of x is -6, halve it to give -3 then square to give 9 and add and subtract

$$x^{2}-6x+7 = x^{2}-6x+9-9+7$$

= $(x-3)^{2}-2$.

Notice that the minimum value of the expression is -2 when x = 3, since the minimum value of $(x - 3)^2$ is 0.

Example: Complete the square in $3x^2 + 24x - 5$.

Solution:

1] The coefficient of x^2 is not 1, so we must 'fiddle' it to make it 1, and then go on to step 2].

$$3x^{2} + 24x - 5 = 3(x^{2} + 8x) - 5$$

= 3(x^{2} + 8x + 4^{2} - 4^{2}) - 5
= 3(x + 4)^{2} - 48 - 5
= 3(x + 4)^{2} - 53

Notice that the minimum value of the expression is -53 when x = -4, since the minimum value of $(x + 4)^2$ is 0. Thus the vertex of the curve is at (-4, -53).

Method 2

Example: Re-write $x^2 - 12x + 7$ in completed square form

Solution: We know that we need -6 (half the coefficient of x)

and that $(x-6)^2 = x^2 - 12x + 36$

 \Rightarrow $x^2 - 12x + 7 = (x - 6)^2 - 27$

Notice that the minimum value of the expression is -27 when x = 6, since the minimum value of $(x - 6)^2$ is 0. Thus the vertex of the curve is at (6, -27).

Example: Express $3x^2 + 12x - 2$ in completed square form.

Solution: The coefficient of x^2 is not 1 so we must 'take 3 out' $3x^2 + 12x - 2 = 3(x^2 + 4x) - 2$ and we know that $(x + 2)^2 = x^2 + 4x + 4$, so $x^2 + 4x = (x + 2)^2 - 4$ $\Rightarrow 3x^2 + 12x - 2 = 3(x^2 + 4x) - 2 = 3[(x + 2)^2 - 4] - 2$ $= 3(x + 2)^2 - 14$

Notice that the minimum value of the expression is -14 when x = -2, since the minimum value of $(x - 2)^2$ is 0. Thus the vertex of the curve is at (-2, -14).

Factorising quadratics

All the coefficients must be whole numbers (integers) then the factors will also have whole number coefficients.

Example:	Factorise $10x^2$	$x^2 + 11x - 6.$		
Solution: Looking at the $10x^2$ and the -6 we see that possible factor			possible factors are	
	$(10x \pm 1),$	$(10x \pm 2),$	$(10x \pm 3),$	$(10x \pm 6),$
	$(5x \pm 1),$	$(5x \pm 2),$	$(5x \pm 3),$	$(5x \pm 6),$
	$(2x \pm 1),$	$(2x \pm 2),$	$(2x \pm 3),$	$(2x \pm 6),$
	$(x \pm 1),$	$(x \pm 2),$	$(x \pm 3),$	$(x \pm 6),$

Also the -6 tells us that the factors must have opposite signs, and by trial and error or common sense

$$10x^2 + 11x - 6 = (2x + 3)(5x - 2).$$

Solving quadratic equations.

by factorising.

Example:	$x^{2} - 5x + 6 = 0 \implies (x - 3)(x - 2) = 0$
\Rightarrow	$x-3=0$ or $x-2=0 \implies x=3$ or $x=2$.
Example:	$x^2 + 8x = 0 \implies x(x+8) = 0$
\Rightarrow	$x = 0$ or $x + 8 = 0 \implies x = 0$ or $x = -8$

N.B. Do **not** divide through by *x* first: you will lose the root of x = 0.

by completing the square

Example:	$x^2 - 6x - 3 = 0$	
\Rightarrow	$x^2 - 6x = 3$	
and	$(x-3)^2 = x^2 - 6x + 9$	
\Rightarrow	$x^2 - 6x + 9 = 3 + 9 \implies$	$\left(x-3\right)^2 = 12$
\Rightarrow	$(x-3) = \pm \sqrt{12} \implies$	$x = 3 \pm \sqrt{12} = -0.464$ or 6.46.

by using the formula

always try to factorise first.

$$ax^2 + bx + c = 0$$
 \Rightarrow $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Example: $3x^2 - x - 5 = 0$ will not factorise, so we use the formula with

$$a = 3, b = -1, c = -5$$

 $\Rightarrow \quad x = \quad \frac{-1 \pm \sqrt{(-1)^2 - 4 \times 3 \times (-5)}}{2 \times 3} = -1.135 \text{ or } +1.468$

The discriminant $b^2 - 4ac$

In the formula for the quadratic equation

$$ax^{2} + bx + c = 0$$
 \Rightarrow $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

i) there will be two distinct real roots if $b^2 - 4ac > 0$

ii) there will be only one real root if $b^2 - 4ac = 0$

iii) there will be no real roots if $b^2 - 4ac < 0$

Example: For what values of k does the equation $3x^2 - kx + 5 = 0$ have

- i) two distinct real roots,
- ii) exactly one real root
- iii) no real roots.

 \Rightarrow

Solution: The discriminant
$$b^2 - 4ac = (-k)^2 - 4 \times 3 \times 5 = k^2 - 60$$

i) for two distinct real roots
$$k^2 - 60 > 0$$

$$\Rightarrow \quad k^2 > 60 \qquad \Rightarrow \qquad k < -\sqrt{60}, \text{ or } k > +\sqrt{60}$$

and ii) for only one real root $k^2 - 60 = 0$

$$\Rightarrow k = \pm \sqrt{60}$$

and iii) for no real roots
$$k^2 - 60 < 0$$

 $\Rightarrow -\sqrt{60} < k < +\sqrt{60}.$

Miscellaneous quadratic equations

a)
$$2 \sin^2 x - \sin x - 1 = 0.$$

Put $y = \sin x$ to give $2y^2 - y - 1 = 0$
 $\Rightarrow (y - 1)(2y + 1) = 0 \Rightarrow y = 1$ or $y = -\frac{1}{2}$
 $\Rightarrow \sin x = 1$ or $-\frac{1}{2} \Rightarrow x = 90^\circ, 210^\circ$ or 330° from 0° to 360° .

b)
$$3^{2x} - 10 \times 3^{x} + 9 = 0$$

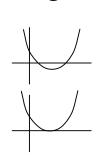
Notice that $3^{2x} = (3^{x})^{2}$ and put $y = 3^{x}$ to give
 $y^{2} - 10y + 9 = 0 \implies (y - 9)(y - 1) = 0$
 $\implies y = 9$ or $y = 1$
 $\implies 3^{x} = 9$ or $3^{x} = 1 \implies x = 2$ or $x = 0$.

c)
$$y - 3\sqrt{y} + 2 = 0$$
. Put $\sqrt{y} = x$ to give
 $x^2 - 3x + 2 = 0$ and solve to give $x = 2$ or 1
 $\Rightarrow y = x^2 = 4$ or 1.

Quadratic graphs

a) If a > 0 the parabola will be 'the right way up'

- i) if $b^2 4ac > 0$ the curve will meet the *x*-axis in two points.
- ii) if $b^2 4ac = 0$ the curve will meet the *x*-axis in only one point (it will *touch* the axis)
- iii) if $b^2 4ac < 0$ the curve will not meet the *x*-axis.



b) a) If a < 0 the parabola will be 'the wrong way up'
i) if b² - 4ac > 0 the curve will meet the *x*-axis in two points.
ii) if b² - 4ac = 0 the curve will meet the *x*-axis in only one point (it will *touch* the axis)

iii) if $b^2 - 4ac < 0$ the curve will not meet the *x*-axis.

Note: When sketching the curve of a quadratic function you should always show the value on the *y*-axis and

if you have factorised you should show the values where it meets the x-axis,

if you have completed the square you should give the co-ordinates of the vertex.

Simultaneous equations

Two linear equations

Solve 3x - 2y = 4 and 4x + 7y = 15. Example:

Make the coefficients of x (or y) equal then add or subtract the equations to Solution: eliminate *x* (or *y*).

Here 4 times the first equation gives and 3 times the second equation gives		- 8y = 16 $+ 21y = 45$		
Subtracting gives		-29y = -29	\Rightarrow	<i>y</i> = 1
Put $y = 1$ in equation one $\Rightarrow 3x = 4 + 2y = 4 + 2$	\Rightarrow	<i>x</i> = 2		
Check in equation two: L.H.S. = $4 \times 2 + 7 \times 1 = 15 =$	R.H	.S.		

One linear and one quadratic.

Find x (or y) from the Linear equation and substitute in the Quadratic equation.

Solve x - 2y = 3, $x^2 - 2y^2 - 3y = 5$ Example:

Solution:	From first equation $x = 2y + 3$	
Substi	tute in second $\Rightarrow (2y+3)^2 - 2y^2 - 3y = 5$	
\Rightarrow	$4y^2 + 12y + 9 - 2y^2 - 3y = 5$	
\Rightarrow	$2y^2 + 9y + 4 = 0 \implies (2y + 1)(y + 4) = 0$	
\Rightarrow	$y = -\frac{1}{2}$ or $y = -4$	
\Rightarrow	x = 2 or $x = -5$ from the linear equation.	
Check in quadratic for $x = 2$, $y = -\frac{1}{2}$		

L.H.S. =
$$2^2 - 2(-\frac{1}{2})^2 - 3(-\frac{1}{2}) = 5 = \text{R.H.S.}$$

and for $x = -5$, $y = -4$

L.H.S. =
$$(-5)^2 - 2(-4)^2 - 3(-4) = 25 - 32 + 12 = 5 =$$
R.H.S.

Inequalities

Linear inequalities

Solving algebraic inequalities is just like solving equations, add, subtract, multiply or divide the same number to, from, etc. BOTH SIDES

EXCEPT - if you multiply or divide both sides by a NEGATIVE number then you must TURN THE INEQUALITY SIGN ROUND.

Example: Solve 3 + 2x < 8 + 4xSolution: sub 3 from B.S. $\Rightarrow 2x < 5 + 4x$ sub 4x from B.S. $\Rightarrow -2x < 5$ divide B.S. by -2 and turn the inequality sign round $\Rightarrow x > -2.5$.

Example: Solve $x^2 > 16$

Solution: We must be careful here since the square of a negative number is positive giving the full range of solutions as

 \Rightarrow x < -4 or x > +4.

Quadratic inequalities

Always sketch a graph and find where the curve meets the *x*-axis

Example: Find the values of *x* which satisfy

$$3x^2 - 5x - 2 \ge 0.$$

Solution:

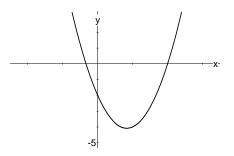
$$3x^2 - 5x - 2 = 0$$

$$\Rightarrow \qquad (3x+1)(x-2) = 0$$

$$\Rightarrow$$
 $x = -\frac{1}{3}$ or 2

We want the part of the curve which is above or on the *x*-axis

$$\Rightarrow$$
 $x \le -\frac{1}{3}$ or $x \ge 2$



3 Coordinate geometry

Distance between two points

Distance between $P(a_1, b_1)$ and $Q(a_2, b_2)$ is $\sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2}$

Gradient

Gradient of PQ is $m = \frac{b_2 - b_1}{a_2 - a_1}$

Equation of a line

Equation of the line *PQ*, above, is y = mx + c and use a point to find *c* or the equation of the line with gradient *m* through the point (x_1, y_1) is

$$y - y_1 = m(x - x_1)$$

or the equation of the line through the points (x_1, y_1) and (x_2, y_2) is

$$\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1} \qquad (\text{you do not need to know this one}!!)$$

Parallel and perpendicular lines

Two lines are parallel if they have the same gradient and they are perpendicular if the product of their gradients is -1.

- *Example:* Find the equation of the line through $(4\frac{1}{2}, 1)$ and perpendicular to the line joining the points A(3, 7) and B(6, -5).
- Solution: Gradient of AB is $\frac{7-5}{3-6} = -4$

 \Rightarrow gradient of line perpendicular to *AB* is $\frac{1}{4}$, (product of perpendicular gradients is -1) so we want the line through (4¹/₂, 1) with gradient $\frac{1}{4}$.

Using
$$y - y_1 = m(x - x_1) \implies y - 1 = \frac{1}{4} (x - \frac{4}{2})$$

 $\implies 4y - x = -\frac{1}{2}$ or $-2x + 8y + 1 = 0$.

4 Sequences and series

A sequence is any list of numbers.

Definition by a formula $x_n = f(n)$

Example: The definition $x_n = 3n^2 - 5$ gives $x_1 = 3 \times 1^2 - 5 = -2$, $x_2 = 3 \times 2^2 - 5 = 7$, $x_3 = 3 \times 3^2 - 5 = 22$,

Definitions of the form $x_{n+1} = f(x_n)$

These have two parts:- (i) a starting value (or values)

(ii) a method of obtaining each term from the one(s) before.

Examples: (i) The definition $x_1 = 3$ and $x_n = 3x_{n-1} + 2$ defines the sequence 3, 11, 35, 107, ... (ii) The definition $x_1 = 1$, $x_2 = 1$, $x_n = x_{n-1} + x_{n-2}$ defines the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 65, ... This is the Fibonacci sequence.

Series and Σ notation

A series is the sum of the first so many terms of a sequence.

For a sequence whose *n*th term is $x_n = 2n + 3$ the sum of the first *n* terms is a series

 $S_n = x_1 + x_2 + x_3 + x_4 \dots + x_n = 5 + 7 + 9 + 11 + \dots + (2n + 3)$

This is written in Σ notation as $S_n = \sum_{i=1}^n x_i = \sum_{i=1}^n (2i+3)$ and is a *finite* series of *n* terms.

An *infinite* series has an infinite number of terms $S_{\infty} = \sum_{i=1}^{\infty} x_i$.

Arithmetic series

An *arithmetic series* is a series in which each term is a constant amount bigger (or smaller) than the previous term: this *constant amount* is called the *common difference*.

Examples: 3, 7, 11, 15, 19, 23, with common difference 4 28, 25, 22, 19, 16, 13, ... with common difference -3.

Generally an arithmetic series can be written as

 $S_n = a + (a + d) + (a + 2d) + (a + 3d) + (a + 4d) + \dots$ up to *n* terms,

where the first term is a and the common difference is d.

The *n*th term $x_n = a + (n-1)d$

The sum of the first n terms of the above arithmetic series is

$$S_n = \frac{n}{2} (2a + (n-1)d),$$
 or $S_n = \frac{n}{2} (a+L)$ where L is the **last** term.

Example: Find the *n*th term and the sum of the first 100 terms of the arithmetic series with 3^{rd} term 5 and 7th term 17.

Solution:

$$x_{7} = x_{3} + 4 \times d$$

$$\Rightarrow \qquad 17 = 5 + 4 \times d \qquad \Rightarrow \qquad d = 3$$

$$\Rightarrow \qquad x_{1} = x_{3} - 2 \times d \qquad \Rightarrow \qquad x_{1} = 5 - 6 = -1$$

$$\Rightarrow \qquad n \text{th term} \qquad x_{n} = a + (n - 1)d = -1 + 3(n - 1)$$
and
$$\Rightarrow \qquad S_{100} = \frac{100}{2} \times (2 \times -1 + (100 - 1) \times 3) = 14750.$$

Proof of the formula for the sum of an arithmetic series

You **must** know this proof.

First write down the general series and then write it down in reverse order

$$S_n = a + (a+d) + (a+2d) + \dots + (a+(n-2)d) + (a+(n-1)d)$$

$$\Rightarrow S_n = (a+(n-1)d + (a+(n-2)d) + (a+(n-3)d) + \dots + (a+d) + a$$
ADD

$$\Rightarrow 2 \times S_n = (2a + (n-1)d) + (2a + (n-1)d) + (2a + (n-1)d) + \dots (2a + (n-1)d) + (2a + (n-1)d)$$

$$\Rightarrow 2 \times S_n = n(2a + (n-1)d)$$

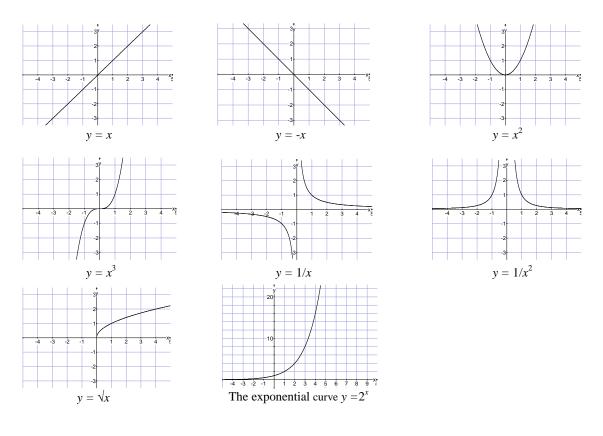
$$\Rightarrow \qquad S_n = \frac{n}{2} \times (2a + (n-1)d),$$

Which can be written as

$$S_n = \frac{n}{2} \times (a + a + (n - 1)d) = \frac{n}{2} \times (a + L)$$
, where L is the last term.

5 Curve sketching

Standard graphs



 $y=3x^2$ is like $y=x^2$ but steeper: similarly for $y=5x^3$ and $y=\frac{7}{x}$, etc.



Transformations of graphs

Translations

(i) If the graph of $y = x^2 + 3x$ is translated through +5 in the y-direction the equation of the new graph is $y = x^2 + 3x + 5$;

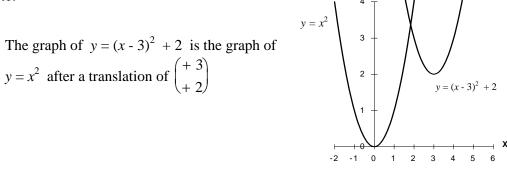
and in general if we know that y is given by some formula involving x, which we write as y = f(x), then the new curve after a translation through +5 units in the y direction is y = f(x) + 5.

(ii) If the graph of $y = x^2 + 3x$ is translated through +5 in the x-direction the equation of the new graph is $y = (x - 5)^2 + 3(x - 5)$;

and if y = f(x), then the new curve after a translation through +5 units in the *x*-direction is y = f(x - 5):

i.e. we replace x by (x - 5) everywhere in the formula for y: note the minus sign, -5, which seems wrong but is correct!

Example:

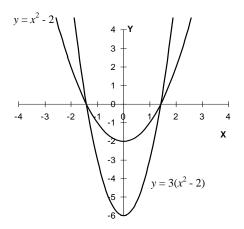


In general $y = x^2$ or y = f(x) becomes $y = (x - a)^2 + b$ or y = f(x - a) + b after a translation through $\begin{pmatrix} a \\ b \end{pmatrix}$

Stretches

(i) If the graph of $y = x^2 + 3x$ is stretched by a factor of +5 in the y-direction.then the equation of the new graph is $y = 5(x^2 + 3x)$; and in general if y is given by some formula involving x, which we write as y = f(x), then the new curve after a stretch by a factor of +5 in the y-direction is $y = 5 \times f(x)$. Example:

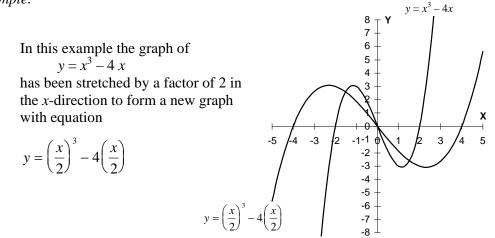
The graph of $y = x^2 - 2$ becomes $y = 3(x^2 - 2)$ after a stretch of factor 3 in the y-direction



In general $y = x^2$ or y = f(x) becomes $y = ax^2$ or y = af(x) after a stretch in the y-direction of factor a.

(ii) If the graph of $y = x^2 + 3x$ is stretched by a factor of +3 in the *x*-direction then the equation of the new graph is $y = \left(\frac{x}{3}\right)^2 + 3\left(\frac{x}{3}\right)$ and in general if *y* is given by some formula involving *x*, which we write as y = f(x), then the new curve after a a stretch by a factor of +3 in the *x*-direction is $y = f\left(\frac{x}{3}\right)$ i.e. we replace *x* by $\frac{x}{3}$ everywhere in the formula for *y*.

Example:



(iii) Note that to stretch by a factor of $\frac{1}{4}$ in the x-direction we replace x by $\frac{x}{\frac{1}{4}} = 4x$ so that y = f(x) becomes y = f(4x)

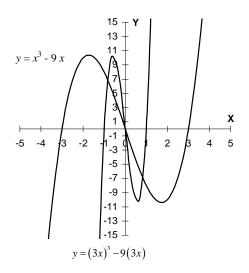
Example:

In this example the graph of $y = x^3 - 9x$ has been stretched by a factor of $\frac{1}{3}$ in the *x*-direction to form a new graph with equation

$$y = (3x)^3 - 9(3x) = 27x^3 - 27x,$$

The new equation is formed by replacing x

by $\frac{x}{\frac{1}{3}} = 3x$ in the original equation.



Reflections in the *x***-axis**

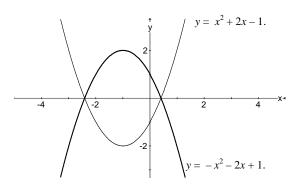
When reflecting in the *x*-axis all the positive *y*-coordinates become negative and vice versa and so the image of

y = f(x) after reflection in the x-axis is y = -f(x).

Example: The image of $y = x^2 + 2x - 1$ after reflection in the *x*-axis is

$$w = -f(x)$$

= -(x² + 2x - 1)
= -x² - 2x + 1



Reflections in the *y***-axis**

When reflecting in the y-axis

the *y*-coordinate for x = +3 becomes the *y*-coordinate for x = -3 and the *y*-coordinate for x = -2 becomes the *y*-coordinate for x = +2.

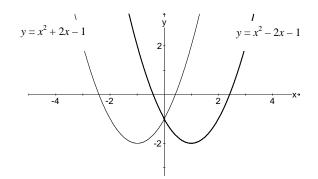
Thus the equation of the new graph is found by replacing x by -x and the image of y = f(x) after reflection in the y-axis is y = f(-x).

Example: The image of

$$v = x^2 + 2x - 1$$

after reflection in the *y*-axis is

$$y = (-x)^{2} + 2(-x) - 1$$
$$= x^{2} - 2x - 1$$



Old equation	Transformation	New equation
y = f(x)	Translation through $\begin{pmatrix} a \\ b \end{pmatrix}$	y = f(x - a) + b
y = f(x)	Stretch with factor <i>a</i> in the <i>y</i> -direction.	$y = a \times f(x)$
y = f(x)	Stretch with factor <i>a</i> in the <i>x</i> -direction.	$y = f\left(\frac{x}{a}\right)$
y = f(x)	Stretch with factor $\frac{1}{a}$ in the <i>x</i> -direction.	y = f(ax)
y=f(x)	Reflection in the <i>x</i> -axis	y = -f(x)
y = f(x)	Reflection in the <i>y</i> -axis	y = f(-x)

6 Differentiation

General result

Differentiating is finding the gradient of the curve.

$$y = x^n \implies \frac{dy}{dx} = nx^{n-1}$$
, or $f(x) = x^n \implies f'(x) = nx^{n-1}$

Examples:

a)	$y = 3x^2 - 7x + 4$	$\frac{dy}{dx} = 6x - 7$
b)	$f(x) = 7\sqrt{x} = 7x^{\frac{1}{2}}$	$f'(x) = 7 \times \frac{1}{2} x^{-1/2} = \frac{7}{2\sqrt{x}}$
c)	$y = \frac{8}{x^3} = 8x^{-3}$	$\frac{dy}{dx} = 8 \times {}^-3x^{-4} = \frac{-24}{x^4}$
d)	f(x) = (2x + 1)(x - 3) = 2x2 - 5x - 3	multiply out first $f'(x) = 4x - 5$
e)	$y = \frac{3x^7 - 4x^2}{x^5}$	split up first
	$= \frac{3x^7}{x^5} - \frac{4x^2}{x^5} = 3x^2 - 4x^{-1}$	${}^{3} \frac{dy}{dx} = 6x12x^{-4} = 6x + \frac{12}{x^{4}}$

Tangents and Normals

Tangents

Example:

Find the equation of the tangent to $y = 3x^2 - 7x + 5$ at the point where x = 2.

Solution:

We first find the gradient when x = 2.

$$y = 3x^2 - 7x + 5 \implies \frac{dy}{dx} = 6x - 7$$
 and when $x = 2$, $\frac{dy}{dx} = 6 \times 2 - 7 = 5$.

so the gradient when x = 2 is 5. The equation is of the form y = mx + c where *m* is the gradient so we have

$$y = 5x + c.$$

To find *c* we must find a point on the line, namely the point on the curve when x = 2.

When x = 2 the y - value on the curve is $3 \times 2^2 - 7 \times 2 + 5 = 3$,

i.e. when x = 2, y = 3.

Substituting these values in y = 5x + c we get $3 = 5 \times 2 + c \implies c = -7$

 \Rightarrow the equation of the tangent is y = 5x - 7.

Normals

(The normal to a curve is the line at 90° to the tangent at that point).

We first remember that if two lines with gradients m_1 and m_2 are perpendicular

then $m_1 \times m_2 = -1$.

Example:

Find the equation of the normal to the curve $y = x + \frac{2}{x}$ at the point where x = 2. Solution:

We first find the gradient of the tangent when x = 2.

 $y = x + 2x^{-1} \implies \frac{dy}{dx} = 1 - 2x^{-2} = 1 - \frac{2}{x^2}$ $\implies \text{ when } x = 2 \text{ gradient of the tangent is } m_1 = 1 - \frac{2}{4} = \frac{1}{2}.$ If gradient of the normal is m_2 then $m_1 \times m_2 = -1 \implies \frac{1}{2} \times m_2 = -1 \implies m_2 = -2$ Thus the equation of the normal must be of the form y = -2x + c.From the equation $y = x + \frac{2}{x}$ the value of y when x = 2 is $y = 2 + \frac{2}{2} = 3$ Substituting x = 2 and y = 3 in the equation of the normal y = -2x + c we have $3 = -2 \times 2 + c \implies c = 7$

 \Rightarrow equation of the normal is y = -2x + 7.

7 Integration

Indefinite integrals

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad \text{provided that } n \neq -1$$

N.B. NEVER FORGET THE ARBITRARY CONSTANT + C.

Examples:

a)
$$\int \frac{4}{3x^6} dx = \int \frac{4}{3} x^{-6} dx$$

$$= \frac{4}{3} \times \frac{x^{-5}}{-5} + C = \frac{-4}{15x^5} + C$$

b)
$$\int (3x-2)(x+1) dx = \int 3x^2 + x - 2 dx$$
 multiply out first

$$= x^3 + \frac{1}{2}x^2 - 2x + C.$$

c)
$$\int \frac{x^9 + 5x^2}{x^5} dx = \int x^4 + 5x^{-3} dx$$
 split up first

$$= \frac{x^5}{5} + 5 \times \frac{x^{-2}}{-2} + C = \frac{x^5}{5} - \frac{5}{2x^2} + C$$

Finding the arbitrary constant

If you know the derivative (gradient) function and a point on the curve you can find C.

Example:	Solve $\frac{dy}{dx} = 3x^2 - 5$, given that $y = 4$ when $x = 2$.
Solution:	$y = \int 3x^2 - 5 dx = x^3 - 5x + C$ but $y = 4$ when $x = 2$
\Rightarrow	$4 = 2^3 - 5 \times 2 + C \qquad \Longrightarrow \qquad C = 6$
\Rightarrow	$y = x^3 - 5x + 6.$

Index

Differentiation, 20 Distance between two points, 11 Equation of a line, 11 Gradient, 11 Graphs Reflections, 18 Standard graphs, 14 Stretches, 15 Translations, 15 Indices, 3 Inequalities linear inequalities, 10 quadratic inequalities, 10 Integrals finding arbitrary constant, 22 indefinite, 22 Normals, 21 Parallel and perpendicular lines, 11

Quadratic equations $b^2 - 4ac, 7$ completing the square, 6 factorising, 6 formula, 6 miscellaneous, 7 Quadratic functions, 4 completing the square, 4 factorising, 6 vertex of curve, 5 Quadratic graphs, 8 Series Arithmetic, 12 Arithmetic, proof of sum, 13 Sigma notation, 12 Simultaneous equations one linear equations and one quadratic, 9 two linear equations, 9 Surds, 4 rationalising the denominator, 4 Tangents, 20