
Walking Talking - Graphs

(a) (i) Use the graph paper below to draw the graph of 3x + 2y = 12.

(ii) Write down the gradient of 3x + 2y = 12.

[1]

[3]

(b) Select from the following list of equations to complete the table below.

Equations:

A:
$$y + 4x = 3$$

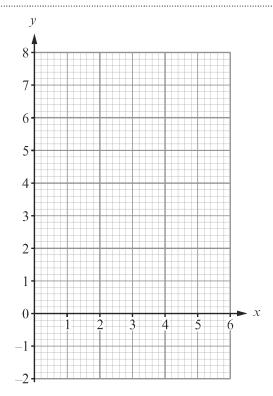
$$\mathbf{B:} \quad y = 5x$$

A:
$$y + 4x = 3$$
 B: $y = 5x$ **C:** $y = 5x + 7$

D:
$$y - 3x = 4$$

D:
$$y-3x = 4$$
 E: $x + y - 5 = 0$ **F:** $2y = 3x + 5$

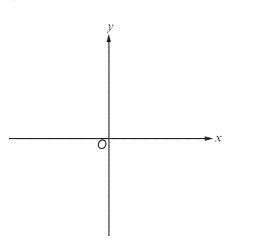
F:
$$2y = 3x + 5$$


Description	Equation			
Passes through the origin (0, 0)				
Parallel to $y = 3x + 7$				
Intersects the <i>y</i> -axis at $y = 5$				

***************************************	 	[3
		L ²

Line	Equation
A	y = 3x + 4
В	y = -3x + 3
С	y = -2x - 4
D	y = 3x - 5
Е	y = 4x + 4

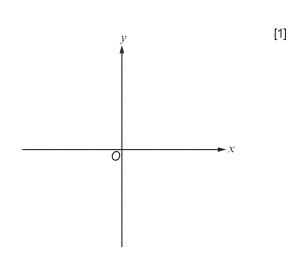
(a)	Which two of the above lines are parallel? You must give a clear reason for your answer.	
	[2]	 2]
(b)	Which two of the above lines intersect each other on the <i>y</i> -axis?	


Lucy is a scientist. During an investigation she needs to find the points of intersection of two equations to solve a problem. The equations are $y = x^2 - 6x + 8$ and x + y = 4. Draw graphs to solve Lucy's problem.

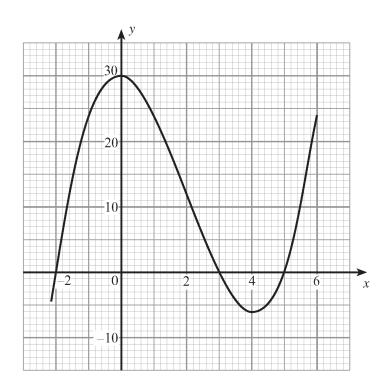
[5] Points of intersection

Use the axes given below to sketch the following.

(a)
$$y = x^2$$



[1]


(b)
$$y = -x^2$$

(c)
$$y = x^3$$

The graph of the equation $y = x^3 - 6x^2 - x + 30$ is shown on the graph paper below.

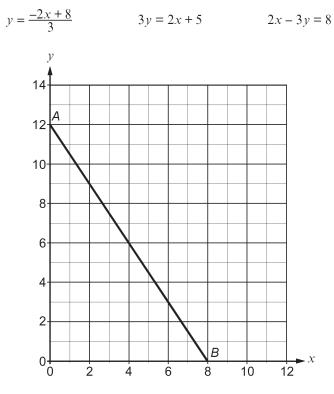
Use the graph above to answer the following questions.

(a) Solve $x^3 - 6x^2 - x + 30 = 0$.

[2]

(b) By drawing a suitable straight line, solve the equation $x^3 - 6x^2 - x + 30 = -5x + 10$.

Select two of the following lines which are perpendicular to the straight line, AB, shown on the grid. You must write a reason for your selections.


$$2x + 3y = 8$$

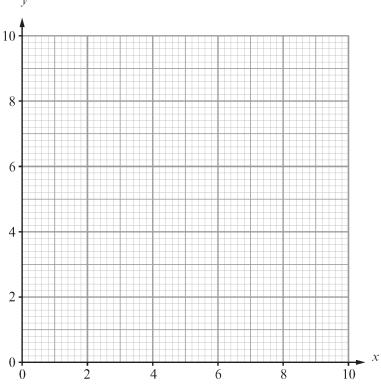
$$2y = 3x + 6$$

$$y = \frac{-2x + 1}{3}$$

$$3y = 2x + 5$$

$$2x - 3y = 8$$

Reason for selections:	[4]


A cutting machine has two settings, x and y.

For safety in operating the cutting machine, the settings x and y must be selected so that all the inequalities below are satisfied.

$$x + y < 8$$
$$5x + y > 10$$
$$2y - x > 4$$

(a) Use the graph paper below to identify the region that shows the safe settings of x and y for the cutting machine.

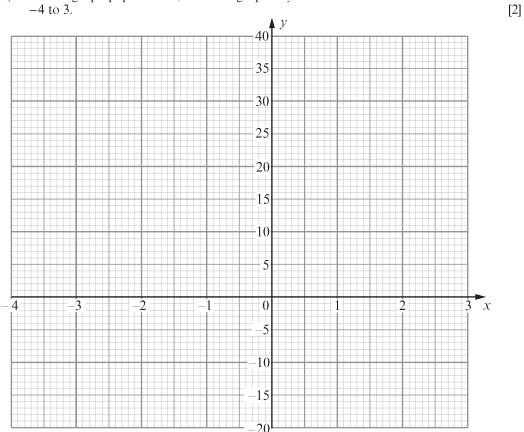
у

[3]

(b) Write down a set of possible safe settings for the cutting machine.

$$x =$$
 and $y =$

[1]


The table shows values of $y = 3x^2 + 2x - 10$ for values of x from -4 to 3.

х	-4	-3	-2	-1	0	1	2	3
$y = 3x^2 + 2x - 10$	30		-2	-9	-10	- 5	6	23

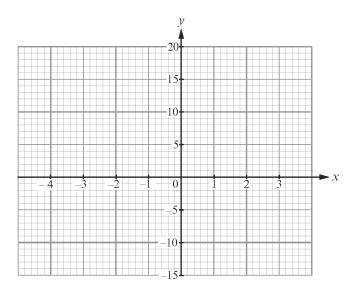
Complete the table above.

[1]

On the graph paper below, draw the graph of $y = 3x^2 + 2x - 10$ for values of x from -4 to 3.

Write down the x-coordinates of the points where the graph of $y = 3x^2 + 2x - 10$ intersects the *x*-axis.

[1]


The table shows some of the values of $y = 2x^2 + 3x - 9$ for values of x from -4 to 3.

(a) Complete the table below.

X	-4	-3	-2	-1	0	1	2	3
$y = 2x^2 + 3x - 9$	11	0		-10	-9	-4		18

[2]

(b) On the graph paper below, draw the graph of $y = 2x^2 + 3x - 9$ for values of x from -4 to 3.

[3]

(c) Use your graph to solve $2x^2 + 3x - 9 = 0$.

[2]

(d) Use your graph to solve $2x^2 + 3x - 9 = 6$.

[2]