

Please write clearly in	n block capitals.		
Centre number		Candidate number	
Surname	ANSLIERS		
Forename(s)			
Candidate signature		· ·	

AS MATHEMATICS

Unit Statistics 1B

Wednesday 8 June 2016

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The **final** answer to questions requiring the use of tables or calculators should normally be given to three significant figures.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.
- Unit Statistics 1B has a written paper only.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

MS1B

Answer all questions.

Answer each question in the space provided for that question.

The table shows the heights, $x \, \text{cm}$, and the arm spans, $y \, \text{cm}$, of a random sample of 12 men aged between 21 years and 40 years.

X	152	166	154	159	179	167	155	168	174	182	161	163
y	143	154	151	153	168	160	146	163	170	175	155	158

- (a) Calculate the value of the product moment correlation coefficient between x and y.

 [3 marks]
- (b) Interpret, in context, your value calculated in part (a).

[2 marks]

QUESTION PART REFERENCE	Answer space for question 1
la)	r=0.9591457841
6)	very strong positive linear correlation between
	heights and arm spans of men between 21 and 40 years.

A small chapel was open to visitors for 55 days during the summer of 2015. The table summarises the daily numbers of visitors.

Number of visitors	Number of days
20 or fewer	1
21	3 2
22	6 3
23	12 6
. 24	20 8
25	30 10
26	43 13
27	7
28	2
29	1
30 or more	2
Total	55

- (a) For these data:
 - (i) state the modal value;

[1 mark]

(ii) find values for the median and the interquartile range.

[2 marks]

(b) Name one measure of average **and** one measure of spread that cannot be calculated exactly from the data in the table.

[2 marks]

(c) Reference to the raw data revealed that the 3 unknown exact values in the table were 13, 37 and 58.

Making use of this additional information, together with the data in the table, calculate the value of **each** of the two measures that you named in part (b).

[3 marks]

Answer space for question 2							
26							
Median - 55+1 = 28th value							
2							
= 25							
	26 Mediar - 55+1 = 78 12 value 2 = 25						

QUESTION PART REFERENCE	Answer space for question 2
,	$10R = UQ - LQ$ $UQ = \frac{(55+1) \times 3}{4} \times 3 = 342^{nd} \text{ value } \rightarrow 26$
	$iQ = 55+1 = 14^{12} \text{ value} -7 24$ 4 $1QC = 26-24 = 2$
٤)	cannot calculate mean or standard deviation I range
د)	Mean = 25.6 sd = 5.311064621 OR 5.262560752 range = 58-13 = 45

The table shows, for a random sample of 500 patients attending a dental surgery, the patients' ages, in years, and the NHS charge bands for the patients' courses of treatment. Band 0 denotes the least expensive charge band and band 3 denotes the most expensive charge band.

		Charge	Charge band for course of treatment						
		Band 0	Band 1	Band 2	Band 3	Total			
Age of	Under 19	32	43	5	0	80			
	Between 19 and 40	17	62	22	3	104			
patient (years)	Between 41 and 65	28	82	35	31	176			
	66 or over	13	53	68	6	140			
	Total	90	240	130	40	500			

- (a) Calculate, **to three decimal places**, the probability that a patient, selected at random from these 500 patients, was:
 - (i) aged between 41 and 65;
 - (ii) aged 66 or over and charged at band 2;
 - (iii) aged between 19 and 40 and charged at most at band 1;
 - (iv) aged 41 or over, given that the patient was charged at band 2;
 - (v) charged at least at band 2, given that the patient was not aged 66 or over.

[9 marks]

(b) Four patients at this dental surgery, **not** included in the above 500 patients, are selected at random.

Estimate, **to three significant figures**, the probability that two of these four patients are aged between 41 and 65 and are **not** charged at band 0, and the other two patients are aged 66 or over and are charged at either band 1 or band 2.

[5 marks]

QUESTION PART REFERENCE	Answer space for question 3
Jai)	$p(41-65) = \frac{176}{500} = 0.352$
ii)	$P(66 \text{ or over and } 2) = \frac{68}{500} = 0.136$
_iii)	P(19-40 and at most band 1) = 79 = 0.158

QUESTION PART REFERENCE	Answer space for question 3							
iv)	P(4/ or over / sand Z) = 103 = 0.7923076923							
	= 0.792							
(v	P(at least sand 2) not aged 66 or over) = 96 = 0.267 360							
٤)	P(41-65 and not band 0) = 150							
	504 METHOD MARK							
	9(66 or over and band 1 op 2) = 123 Only 504							
	0011,0101,0110,1100,1010,1001							
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	0.005260. ×6 = 0.03156121							
	= 0.0316							
	P(41-65 and not band 0) = 148							
	P(16 or over and Land (or Z) = 111 ANJWER!							
	P(66 or over and 4 and 1 or 2) = 121 500							
	(148 × 148 × 121 × 121) × 6 500 500 500 500							
	0.00513114 X6 = 0.030786860.							
	= 0.0308							
0								

As part of her science project, a student found the mass, y grams, of a particular compound that dissolved in $100\,\mathrm{ml}$ of water at each of 12 different set temperatures, $x\,^\circ\mathrm{C}$. The results are shown in the table.

x	20	25	30	35	40	45	50	55	60	65	70	75
y	242	262	269	290	298	310	326	355	359	375	390	412

(a) Calculate the equation of the least squares regression line of y on x.

[4 marks]

(b) Interpret, in context, your value for the gradient of this regression line.

[2 marks]

(c) Use your equation to estimate the mass of the compound which will dissolve in $100\,\mathrm{ml}$ of water at $68\,^{\circ}\mathrm{C}$.

[1 mark]

(d) Given that the values of the 12 residuals for the regression line of y on x lie between -7 and +9, comment, with justification, on the likely accuracy of your estimate in part (c).

[2 marks]

ESTION PART ERENCE	Answer space for question 4
a)	a = 181.3006993
	6 = 3.004195804
	y = 181.3 + 3.004x
.)	for every additional 1°C, the mass increases by
	3.0049.
2)	x=68, y=1,81.3+3.004x68
	= 385.5853147
)	the residuals are relatively small, therefore the
	regression live 11 reliable and me estimate will
	be fairly accurate.
	f state of the sta

- Still mineral water is supplied in 1.5-litre bottles. The actual volume, X millilitres, in a bottle may be modelled by a normal distribution with mean $\mu=1525$ and standard deviation $\sigma=9.6$.
 - (a) Determine the probability that the volume of water in a randomly selected bottle is:
 - (i) less than 1540 ml;
 - (ii) more than 1535 ml;
 - (iii) between 1515 ml and 1540 ml:
 - (iv) not 1500 ml.

[7 marks]

(b) The supplier requires that only 10 per cent of bottles should contain more than $1535\,\mathrm{ml}$ of water.

Assuming that there has been no change in the value of σ , calculate the reduction in the value of μ in order to satisfy this requirement. Give your answer to one decimal place.

[4 marks]

(c) Sparkling spring water is supplied in packs of six 0.5-litre bottles. The actual volume in a bottle may be modelled by a normal distribution with mean 508.5 ml and standard deviation 3.5 ml.

Stating a necessary assumption, determine the probability that:

- (i) the volume of water in each of the 6 bottles from a randomly selected pack is more than $505\,\mathrm{ml}$;
- (ii) the $\rm mean$ volume of water in the 6 bottles from a randomly selected pack is more than $505~\rm ml.$

[7 marks]

QUESTION PART REFERENCE	Answer space for question 5
sa)	X~~(1525, 9-62)
<u>i)</u>	P(X(1540) = P(Z(1540-1525)
	- 012/15/)
	= P(Z(1.56) = 0.94062
	0 1.26

QUESTION PART REFERENCE	Answer space for question 5
-ti)	P(X) 1535) = P(2) 1535-1925)
	= P(Z>1.04)
-	= 1 - \$(1.04)
	= 1 - 0.85083
	= 0.14917
iri)	P(1515 (X (1540) = P(1515-1525 (2(1.56)
	= P(-1.04 (2(1.56)
	= \$\phi(1.56) - \$\phi(-1.04)
	= 0.94062 - (1-0.85083)
	= 0.94062 - 0.14917 -1.04 0 156
	= 9.79145
	9.7717
iv)	P(X ≠ 1500) = 1
()	P(X)1535) = 0.1
•)	\$(t)=0.9
	2 = 1.2816
	1535 - M = 1.2816 9.6
	M = 1535 - 9.6 × 1.2816
	M=1522.69664 = 1522.7gnl
	reduction in M = 1525 - 1522.7
	= 2.3ml

QUESTION PART REFERENCE	Answer space for question 5
ci)	assumptions - from correct population
	it is a random sample
	X~~(508.5, 3.52)
	$b(X)202) = b(5 > \frac{2.2}{202 \cdot 208 \cdot 2})$
	= P(2)-1)
	= \$\psi(1)\)
	= 0.84134
	Plall 6) = 0.841346
	= 0.354673
ii)	$X \sim N\left(508.5, \frac{3.5}{3.5}\right)$
	$P(X) 202) = P(\frac{5}{2}) \frac{\sqrt{\frac{3.5}{6}}}{\sqrt{\frac{6}{1000}}}$
	= P(Z>-2.45)
	= Ø(1.45)
	= 0.99286
	-2-65 0
	·

6 The proportions of different colours of loom bands in a box of $10\,000$ loom bands are given in the table.

Colour	Blue	Green	Red	Orange	Yellow	White
Proportion	0.25	0.25	0.18	0.12	0.15	0.05

(a) A sample of 50 loom bands is selected at random from the box.

Use a binomial distribution with n=50, together with relevant information from the table, to estimate the probability that this sample contains:

(i) exactly 4 red loom bands;

[2 marks]

(ii) at most 10 yellow loom bands;

[1 mark]

(iii) at least 30 blue or green loom bands;

[3 marks]

- (iv) more than 35 but fewer than 45 loom bands that are **neither yellow nor white**. [4 marks]
- (b) The random variable R denotes the number of **red** loom bands in a random sample of 300 loom bands selected from the box.

Estimate values for the mean and the variance of R.

[2 marks]

QUESTION PART REFERENCE	Answer space for question 6
(a)	$\times \sim B(SO, p)$
i)	$\times \sim B(50, \rho)$ $\times \sim B(50, 0.18)$
·	P(X=4) = 50(4 x 0.184 x 0.8246 = 0.026231
	X~8(50,0.15)
<i>ii</i>)	P(X <10) = 0.8801
	×~ B(50, 0.5)
iii)	P(X > 30) = 1-P(X < 29)
	=1-0.8987
	= 0.1013

QUESTION PART REFERENCE	Answer space for question 6
iv)	
	P(35 (X < 45) -1 P(6 (Y (14)) 36,34,38,44 -14,13,6
	P(6(4(14) = P(4 < 14) - P(4 < 5)
	= 0.9393 - 0.0480
	=0.8913
6)	R~B(300,0.18)
	Mem = 1p = 300 x 0 . 18
	= 54
	variance = $np(1-p)$
	= 54 × 0.82
	= 44.78
	Turn over N

Customers buying euros (\in) at a travel agency must pay for them in pounds (£). The amounts paid, £x, by a sample of 40 customers were, in ascending order, as follows.

		83.33							
208.33	229.17	229.17	250.00	250.00	291.67	312.50	312.50	312.50	333.33
		354.17							
437.50	437.50	458.33	458.33	479.17	500.00	516.67	520.83	541.67	625.00

$$\bar{x} = 317.50$$
 and $s = 146.30$

This sample of 40 customers may be regarded as a random sample.

- (a) Construct a 99% confidence interval for the mean amount, in pounds, paid by customers buying euros at the travel agency. Give the limits to two decimal places.

 [4 marks]
- - (i) Comment, with justification, on a claim that the mean number of euros bought by customers at the travel agency is 400.
 - (ii) Use the data in the table to comment on a claim that at most 25 per cent of customers at the travel agency buy fewer than €200.

[5 marks]

QUESTION PART REFERENCE	Answer space for question 7
7a)	Ī=317.50 S=146.30 N=40
	99% CI - P(Z) = 0.995
	7 = 2.5758
	A STATE OF THE STA
	LB-1 Z-2x = 317-50-2-5758 x 146.30
	50
	= {257.9164
	UB - 7 + 2 × 5 = 317.50 + 2.5758 × 146.30
	SA 540
	=6377.08356
	(257.92,6377.08)

QUESTION PART REFERENCE	swer space for question 7
bi) t	257.92 × 1.2 =€309.50}
- t	377.08 x 1.2 = €452.50
	(309.50, 452-50)
	Mean of \$400 is within C. I so claim is
	justified
ii) €	200 = 1.20 = \$166.67
	number of customers below \$166.67 is 7
	7 is 17.5%.
	17-5% (25% claim is justified.
	#
	A 34 B
	Turn over ▶

